Contract Data Analyst

London
10 months ago
Applications closed

Related Jobs

View all jobs

Contract Data Analyst

Data Analyst - Contract

Market Data & Reference Data Analyst (Contract)

Business Data Analyst Inside IR35

Hybrid Data Analyst for Transformation (3-Month Contract)

Finance Data Analyst (6-Month Contract)

Job Title: Contract Data Analyst - A/B Testing
Rate: £400 per day (Outside IR35)
Contract Length: 6 months (potential for extension)

We are looking for a highly skilled Data Analyst with expertise in A/B testing, marketing analytics, and data visualisation to join our top AI client on a contract basis. This role is perfect for someone who thrives on turning data into actionable insights, helping marketing teams optimise performance through rigorous experimentation and analysis.

Key Responsibilities

Design, execute, and analyse A/B and multivariate tests to drive marketing performance.
Work closely with marketing, product, and data teams to extract insights and recommend data-driven strategies.
Develop and maintain dashboards and reports using tools like Tableau, Power BI, or Looker.
Perform deep-dive data analysis to measure the effectiveness of marketing campaigns across different channels.
Present findings and actionable insights to stakeholders in a clear and concise manner.
Ensure data integrity and accuracy across different data sources.

Essential Skills & Experience

Proven experience as a Data Analyst within a marketing or digital environment.
Strong expertise in A/B testing methodologies and statistical significance.
Proficiency in SQL for querying large datasets.
Experience with Python or R for data analysis is a plus.
Hands-on experience with data visualisation tools such as Tableau, Power BI, or Looker.
Strong understanding of digital marketing metrics, attribution models, and customer segmentation.
Ability to communicate complex data findings to non-technical stakeholders

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.