Consumer Lending Data Scientist

Datatech Analytics
Edinburgh
2 weeks ago
Create job alert

Data Scientist - ML & Consumer Lending


South West, UK


Hybrid working, strong salary dependent on experience


The client

South West based, modern office hub, and a major consumer lending portfolio. This is a chance to join a well known financial services group that is investing heavily in data, Applied Data Science, and Machine Learning to stay ahead of the market and improve how it serves its customers.


The business is moving towards cloud native, production grade ML, backed by senior leaders who see Data Science as central to the next chapter of growth. You will sit close to real decision making, working with product, risk, and engineering teams to turn data and ML into tangible customer outcomes.


The role

You will join a growing data science team focused on credit cards and wider consumer lending. Your work will span the full ML lifecycle, from exploratory analysis and model build, through to working with ML Engineers to get models into production and keep them performing as the data strategy matures.


The team is open to Data Scientists at different stages, from those looking to build on a first industry role, through to more experienced practitioners who want broader ownership and influence.


What you will be doing

  • Building and enhancing Python based ML models across the credit card portfolio
  • Using SQL on large, complex datasets to engineer robust, reusable features
  • Partnering with ML Engineers to deploy containerised models and support production ML workflows
  • Working with product and risk stakeholders to identify and shape high value ML and AI use cases
  • Operating within a clear model risk and governance framework, with room to experiment and learn
  • Presenting findings in plain language and helping non specialists act on the insights

What we are looking for

  • Strong grounding in statistics and or Machine Learning, plus solid Python
  • Confident SQL skills and experience with real world, messy datasets
  • Experience of the ML lifecycle, ideally including production or near production environments
  • Exposure to modern cloud and analytics tooling, for example BigQuery or Vertex, and BI tools
  • Interest in credit cards or consumer lending, and how ML and AI can improve fairness and outcomes

You will join a friendly team that values curiosity, knowledge sharing, and personal growth. There is genuine scope to shape how ML and AI are used in the business, whether you see your future in deeper technical expertise or in a more leadership focused path.


If this sounds like the kind of environment you want to be part of, we would love to hear from you.


#J-18808-Ljbffr

Related Jobs

View all jobs

Consumer Lending Data Scientist

Credit Card ML Data Scientist – Hybrid UK

Manager - Data and Data Science Strategy - Emerging Data and Capabilities

Manager - Data and Data Science Strategy - Emerging Data and Capabilities

Manager – Data and Data Science Strategy – Emerging Data and Capabilities

Product Data Scientist: Shape Product Strategy with Data

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.