Consultant

d-fine
London
1 year ago
Applications closed

Related Jobs

View all jobs

Consultant - Senior Consultant, Palantir Foundry Data Engineer, AI & Data, Defence & Security

Consultant - Senior Consultant, Palantir Foundry Data Engineer, AI & Data, Defence & Security

Consultant - Manager, Data Engineer, AI & Data, Defence & Security

Energy & Water Data Analyst

Machine Learning Engineer

Senior Consultant - AI & Data, Financial Services, Data Platforms, Data Engineer, BCM, Edinburgh

Consultant
from the fields of physics, mathematics, computer science, natural sciences, engineering or economics

Contract Period:permanent
Working Time:full-time
Location:London, everywhere in the UK and international
Entry Date:all year around (depending on availability)

d-fine is a continuously growing European consulting company with over 1, employees. Our London office in the heart of the City was established in to deliver services to our clients in the UK and Ireland. Our projects focus on quantitative challenges in software engineering, data analytics, financial risk management, data science, and the development of sustainable technological solutions. d-fine’s consulting approach is based on years of practical experience and dynamic teams with an analytical and technological focus.

Job description

Design of models, methods and processes in both the private and public sectors Software and data engineering, using agile methodologies and full-stack development Development and operationalisation of data-driven models Business analyses and simulations Design, implementation and validation of risk models Use of modern technologies such as machine learning or big data solutions Technical analysis and implementation of regulatory requirements Analysis, design and digitalisation of processes Selection, parameterisation and integration of systems

Requirements

Outstanding university degree (Master/PhD) in physics, mathematics, computer science or natural, engineering or economic sciences with a corresponding quantitative, analytical or technological specialisation English language proficiency Possess significant IT knowledge coupled with strong programming skills, including understanding of the underlying concepts Familiar with at least one of the following subjects: mathematical statistics, numerical analysis, simulation techniques (e.g. Monte Carlo), optimisation methods (e.g. simulated annealing), and financial mathematical modelling Motivated to work on challenging applied quantitative issues requiring both, business understanding and technological expertise Ability to work well in a team Ability to communicate effectively with peers as well as with senior employees of d-fine and our clients Work experience in trading, treasury or risk management may be an additional advantage

We offer

Interesting and varied projects across Europe A competitive salary The opportunity to work with highly talented and motivated colleagues The chance to work with a wide range of clients from specialized hedge funds and industrial conglomerates to banking institutions The option to extend your expertise of financial mathematics through participation in courses at leading international universities A wide range of additional benefits such as company pension scheme, private medical, remote working policy, company events and much more!

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.