Computer Vision Engineer

Fogsphere - A Trading Name of Redev AI Ltd.
City of London
4 days ago
Create job alert

Fogsphere is a London‑based innovator focused on transforming workplace and urban safety through advanced AI, Computer Vision, and Industrial IoT. Built on a principled “Edge‑to‑Fog‑to‑Cloud” architecture, our platform turns passive CCTV cameras and sensors into proactive hazard detectors, capable of identifying threats like missing PPE, fire, smoke, restricted access violations, and more—in real time and at scale. This helps organizations across industries—from manufacturing, construction, oil & gas, and healthcare to smart cities—reduce workplace accidents by up to 90%, ensure regulatory compliance (EHS), and gain powerful operational insights. Fogsphere’s intuitive no‑code visual workflows, hyper‑scalable Kubernetes‑based infrastructure, and commitment to ethical AI and privacy (GDPR compliance) make it a user‑friendly yet enterprise‑grade solution.

About the Role

We are seeking a highly motivated Computer Vision Engineer with a strong background in Deep Learning to join our AI/ML team. You will focus on developing, training, and optimizing models for computer vision applications, working with large-scale image/video datasets, and deploying cutting-edge deep learning solutions into production environments.

Key Responsibilities

  • Design, train, and evaluate deep learning models for computer vision tasks (e.g., classification, detection, segmentation, tracking, retrieval…).
  • Build and maintain scalable data pipelines for training and evaluation.
  • Optimize model architectures for performance, accuracy, and efficiency (e.g., pruning, quantization, distributed training).
  • Contribute to research and prototyping of novel computer vision algorithms.
  • Deploy trained models into production environments in collaboration with software engineering teams.
  • Document workflows and contribute to team knowledge-sharing.

Qualifications

  • MSc in Computer Vision , Machine Learning , Artificial Intelligence , or related field.
  • 2+ years of hands-on experience in deep learning model development and training.
  • Strong proficiency with Python and ML frameworks ( PyTorch , TensorFlow , or Keras ).
  • Solid understanding of CNNs, and ViTs
  • Experience with dataset preparation, augmentation, and preprocessing for computer vision.
  • Strong knowledge of optimization techniques, hyperparameter tuning, and evaluation metrics.
  • Good software engineering practices: version control (Git), code testing, reproducibility.
  • Experience working with MLOps frameworks (e.g., MLflow, Weights & Biases, Kubeflow).

Preferred Skills (nice-to-have)

  • Experience on VLM fine-tuning.
  • Knowledge of cloud platforms ( AWS , GCP , Azure ) for model training and deployment.
  • Background in multimodal AI (vision + language).
  • Contributions to open-source CV/ML projects or publications in top conferences (CVPR, ICCV, NeurIPS, ECCV, TPAMI…).
  • Knowledge on TRT.
  • Experience on edge computing applications.
  • Experience on ANPR and/or Face Recognition, and/or Image Retrieval in general.

What We Offer

  • ZERO micromanagement. At Fogsphere, researchers work independently under the Head of Research, with a focus on open discussion and professional development, where the best ideas are the ones applied.
  • Opportunity to work on cutting-edge computer vision challenges in some of the largest deployments in the field.
  • Possibility to publish papers and collaborate with academia on this task.
  • Collaborative environment with a team of AI researchers and engineers based on multiple countries.
  • Working with academics in the field to help building cutting-edge methods.
  • Competitive salary and benefits package.
  • Career growth and continuous learning opportunities.


#J-18808-Ljbffr

Related Jobs

View all jobs

Computer Vision Engineer

Senior Data Research Engineer Computer Vision

Senior Computer Vision Engineer - up to £70,000 - ID44602

Senior Computer Vision Engineer

Senior Computer Vision Engineer

Senior Computer Vision Engineer...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.