Computer Vision Engineer

GEA
Belfast
10 months ago
Applications closed

Related Jobs

View all jobs

ML/AI Software Engineer

Connectomics Data Analysis Engineer (Neuroscience/computer vision)

Flight Software Engineer - Space

Machine Learning Engineer

Layout Engineer

Senior AI | Machine Learning Engineer

Responsibilities / Tasks

Responsible for building and maintaining the mechanisms for running model inference.

Work with other teams to get new models from design to production as efficiently as possible.

Make technical decisions that balance performance and cost.

Contribute to best practices, design patterns and identifying opportunities to refactor code.

Collaborates across team to ensure the full video pipeline is efficient.

Maintaining the CI/CD pipeline to ensure rapid deployment of models.

Take an active role in building, maintaining the inference edge device along with the tools required to monitor it in the field.

Support other Vision Engineers in learning existing design concepts.

Maintain documentation to allow others to further develop inference components.

Innovation and Change:

Plays an active roles in team process improvements.

Creates and maintains mechanisms to deploy models across multiple deployment targets.

Work with the team lead to scope and refine data requirements and to influence technical decisions, from problem statement to delivered solution.

Works with internal stakeholders to ensures to makes sure new algorithm ideas get delivered into production.

Creates prototypes that help achieve business Objectives and Key Responsibilities (OKR’s).

Works with technical ops team to help on board and adapt farm installs where required.

Create new ways to run algorithms effectively.

Your Profile / Qualifications

Degree in Computer Science or related computer vision based discipline.

Experience taking models from creation to production.

Experience working with academic / researcher to convert ideas to products.

A comprehensive understanding of model inference.

Has worked with both cloud inference and edge inference devices.

Detailed knowledge of Python

Attention to detail.

Understanding of image and video processing.

Driven by high performance.

Eagerness to stay up to date with latest technologies.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.