Computer Vision Engineer

GEA
Belfast
1 year ago
Applications closed

Related Jobs

View all jobs

Computer Vision Engineer

Computer Vision Engineer

Computer Vision Engineer

Computer Vision Engineer - Sports Tracking

Computer Vision Engineer – Sports Tracking

Computer Vision Engineer - Sports Tracking

Responsibilities / Tasks

Responsible for building and maintaining the mechanisms for running model inference.

Work with other teams to get new models from design to production as efficiently as possible.

Make technical decisions that balance performance and cost.

Contribute to best practices, design patterns and identifying opportunities to refactor code.

Collaborates across team to ensure the full video pipeline is efficient.

Maintaining the CI/CD pipeline to ensure rapid deployment of models.

Take an active role in building, maintaining the inference edge device along with the tools required to monitor it in the field.

Support other Vision Engineers in learning existing design concepts.

Maintain documentation to allow others to further develop inference components.

Innovation and Change:

Plays an active roles in team process improvements.

Creates and maintains mechanisms to deploy models across multiple deployment targets.

Work with the team lead to scope and refine data requirements and to influence technical decisions, from problem statement to delivered solution.

Works with internal stakeholders to ensures to makes sure new algorithm ideas get delivered into production.

Creates prototypes that help achieve business Objectives and Key Responsibilities (OKR’s).

Works with technical ops team to help on board and adapt farm installs where required.

Create new ways to run algorithms effectively.

Your Profile / Qualifications

Degree in Computer Science or related computer vision based discipline.

Experience taking models from creation to production.

Experience working with academic / researcher to convert ideas to products.

A comprehensive understanding of model inference.

Has worked with both cloud inference and edge inference devices.

Detailed knowledge of Python

Attention to detail.

Understanding of image and video processing.

Driven by high performance.

Eagerness to stay up to date with latest technologies.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.