Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Computer Vision Engineer

GEA
Belfast
1 year ago
Applications closed

Related Jobs

View all jobs

Computer Vision Engineer

C++ AI & Computer Vision Engineer (Real-Time)

Computer Vision Tech Lead

Senior Computer Vision Data Research Engineer

Computer Vision and Artificial Intelligence Engineer - Summer Placement 2026

Computer Vision and Artificial Intelligence Engineer - Summer Placement 2026...

Responsibilities / Tasks

Responsible for building and maintaining the mechanisms for running model inference.

Work with other teams to get new models from design to production as efficiently as possible.

Make technical decisions that balance performance and cost.

Contribute to best practices, design patterns and identifying opportunities to refactor code.

Collaborates across team to ensure the full video pipeline is efficient.

Maintaining the CI/CD pipeline to ensure rapid deployment of models.

Take an active role in building, maintaining the inference edge device along with the tools required to monitor it in the field.

Support other Vision Engineers in learning existing design concepts.

Maintain documentation to allow others to further develop inference components.

Innovation and Change:

Plays an active roles in team process improvements.

Creates and maintains mechanisms to deploy models across multiple deployment targets.

Work with the team lead to scope and refine data requirements and to influence technical decisions, from problem statement to delivered solution.

Works with internal stakeholders to ensures to makes sure new algorithm ideas get delivered into production.

Creates prototypes that help achieve business Objectives and Key Responsibilities (OKR’s).

Works with technical ops team to help on board and adapt farm installs where required.

Create new ways to run algorithms effectively.

Your Profile / Qualifications

Degree in Computer Science or related computer vision based discipline.

Experience taking models from creation to production.

Experience working with academic / researcher to convert ideas to products.

A comprehensive understanding of model inference.

Has worked with both cloud inference and edge inference devices.

Detailed knowledge of Python

Attention to detail.

Understanding of image and video processing.

Driven by high performance.

Eagerness to stay up to date with latest technologies.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.