Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Computational Biology & Machine Learning Scientist

Skills Alliance
Leeds
6 months ago
Applications closed

Related Jobs

View all jobs

Research Scientist (Quantum Chemistry and Machine Learning), London London

Director of Machine Learning - Antibodies

Director of Machine Learning - Antibodies

Data Scientist - Stats Gen (12-month FTC)

Data Scientist - Stats Gen (12-month FTC)

Lead Data Scientist

Computational Scientist – Machine Learning & Immunology & Biologics

A cutting-edge biotech organization is seeking highly motivatedComputational Scientiststo support the mission of decoding and engineering the immune system. The role focuses on developing advancedmachine learning and statistical modelsto analyze complex biological data, particularly immune repertoires and multimodal datasets.


About the Role

As part of a collaborative Computational Biology team, you will:

  • Design and implement machine learning models—particularlylanguage models, diffusion models, or graph neural networks—tailored to biomedical challenges.
  • Build novel computational methods for interpretingbiological sequences and structural data.
  • Customize existing tools and develop new ones for integrative analysis and visualization oflarge-scale systems immunology data.
  • Drive ML-based pipelines fordiagnostic or therapeutic design.
  • Benchmark computational methods and optimize performance across datasets.
  • Lead or contribute tocollaborative projectsspanning academic, clinical, and industry domains.


Required Qualifications

  • PhD (or MSc with equivalent experience) inComputational Biology, Bioinformatics, Computer Science, Statistics, Physics, or related quantitative discipline.
  • Strong background inmachine learning and statistical modeling, with a demonstrated ability to solve complex biological problems.
  • Proven track record of scientific productivity (e.g., peer-reviewed publications).
  • Hands-on experience indata handling, visualization, and biological data analysis.
  • Proficient inPython, familiar withsoftware development best practices.
  • Practical experience withTensorFlowand/orPyTorch.


Preferred Qualifications

  • 3+ years post-graduate experience in academia or biotech/pharma, applyingML/AI to biological datasets.
  • Prior exposure toimmunology, especiallyTCR/BCR repertoire analysis, or experience with protein design & or biologics.
  • Deep expertise in at least one of the following areas:
  • Language modelsfor sequence analysis
  • Diffusion modelsin molecular design
  • Graph MLin biomedical networks
  • Experience withGPU computing (cloud or HPC clusters).

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.