Complexio | Senior DevOps Engineer

Complexio
Bristol
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Data Engineer

Data Analyst

Senior Data Analyst - Insight Leader (Hybrid | Car)

Senior Data Analyst - Hybrid London | Insight & Strategy

Complexio is Foundational AI works to automate business activities by ingesting whole company data – both structured and unstructured – and making sense of it. Using proprietary models and algorithms Complexio forms a deep understanding of how humans are interacting and using it. Automation can then replicate and improve these actions independently.


Complexio is a joint venture between Hafnia and Símbolo, in partnership with Marfin ManagementC Transport MaritimeTrans Sea Transport and BW Epic Kosan

 

About the job

As a DevOps engineer at our AI product company, you will define and create the platform for deploying, managing, and optimizing our distributed systems across on-premises, multiple cloud environments (AWS, Azure, Google Cloud), and Kubernetes.


Our system leverages multiple LLMs, Graph and Vector Databases and integrates data from multiple sources to power our AI solutions. You will ensure our infrastructure is robust, scalable, and secure, supporting the seamless delivery of our innovative products. This role requires combining cloud technologies and database management expertise, embracing the challenges of integrating AI and machine learning workflows on modern GPUs.


Responsibilities


  • Preferred M.Sc or Ph.d degree in Computer Science or a related field
  • At least 7 years of experience deploying and managing cloud infrastructure (AWS, Azure, Google Cloud) 
  • At least 3 years experience in working with kubernetes environments
  • Proficient in managing and scaling Kubernetes clusters, including monitoring, troubleshooting, and ensuring high availability
  • Experience with cloud-native technologies, CI/CD pipelines, and containerization tools (e.g., Docker)
  • Familiarity with data integration and management from multiple sources in a distributed system environment
  • Proficiency in at least one programming language (Python, Java, Go), and experience with scripting for automation
  • Strong understanding of network infrastructure and security principles, ensuring compliance with data protection regulations


A Bonus:


  • Proficient in database management, specifically with Neo4j and vector databases, including setup, scaling, and optimization for performance and reliability
  • Experience deploying and running Machine Learning Solutions, including LLMs


  • Remote working (Remote must be within 3-5 hours of CET timezone)


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.