National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Cloud Platform Engineer, Data Engineering

bet365
London
5 days ago
Create job alert

Who we are looking for

A Cloud Platform Engineer, who will be embedded within the teams responsible for the delivery and operation of cloud services within Data Engineering.


The next stage of our initiative is to expand our public cloud capability and establish a seamless operating model. The aim is to leverage the speed of delivery and flexibility of the self-serve model, whilst maintaining a strong relationship with the core platform team.


We are embedding Cloud Platform Engineers within the Data Engineering team to help build, operate and support critical cloud products.


We’re looking for someone who has a passion for working on innovative initiatives and will make an immediate impact to the Business by bringing their own experience to a challenging but vibrant environment. You will be given the support and training to allow you to grow and progress within this position.


This role suits those with a development background transitioning to cloud technologies or cloud engineers who want to work closely with development teams.


This role is eligible for inclusion in the Company’s hybrid working from home policy.


Preferred Skills, Qualifications and Experience

  • Prior public cloud experience, preferably with Google Cloud.
  • Strong core platform knowledge in Projects and Folders, IAM and Billing.
  • Proficiency operating with Infrastructure as Code (IaC) using industry standard tooling, preferably Terraform and methodologies.
  • Knowledge of GitOps and preferably experience of use.
  • Proficiency of source code management; namely Git.
  • Confident in utilising custom automation and scripting using tools such as G-Cloud, CLI, Bash, Python and Golang.
  • Experience of modern platform stacks such as Kubernetes or GKE, as well as affiliated technologies and workflows including service mesh/ingress, CI/CD, monitoring stacks and security instruments.
  • Experience of using and managing Docker images.
  • Awareness of networking in Public Cloud environments.
  • Awareness of key security considerations when operating in the public cloud.


Main Responsibilities

  • Working as an embedded Cloud Platform Engineer within a software function to deploy, operate and support related cloud resources.
  • Taking accountability for the end-to-end delivery of cloud resources as part of software product initiatives.
  • Working with and influencing others to advocate and guide technical aspects of cloud adoption.
  • Working with the central Cloud Platform Team to embed key principles and standards in the operational running of responsible technologies.
  • Supporting and consulting with stakeholders.
  • Driving engineering excellence across your team by fostering modern engineering practices and processes.
  • Working with the central Cloud Platform Team to help steer the next iteration of self-serve automation technologies.


By applying to us you are agreeing to share your Personal Data in accordance with our Recruitment Privacy Policy - https://www.bet365careers.com/en/privacy-policy.

Related Jobs

View all jobs

Cloud Platform Engineer, Data Engineering

GCP Data Engineer - London - £75k +bonus

Data Engineer (4 day week)

Senior Python Data Engineer - AI

Senior Python Data Engineer - AI

Senior Python Data Engineer - AI

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.