Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Cloud Data Engineer

Vm2r
Bristol
4 weeks ago
Applications closed

Related Jobs

View all jobs

Cloud Data Engineer

Cloud Data Engineer

Data Engineer - Manager

Azure/Databricks Data Engineer

Lead Data Engineer

Google Cloud Platform Data Engineer

  • Create and maintain optimal data pipeline architecture.
  • Assemble large, complex data sets that meet functional/non-functional business requirements.
  • Identify, design, and implement internal process improvements: automating manual processes, optimizing data delivery, re-designing infrastructure for greater scalability, etc.
  • Build the infrastructure required for optimal extraction, transformation, and loading of data from a wide variety of data sources using SQL and AWS ‘big data’ technologies.
  • Build analytics tools that utilize the data pipeline to provide actionable insights into customer acquisition, operational efficiency, and other key business performance metrics.
  • Work with stakeholders including the Executive, Product, Data, and Design teams to assist with data-related technical issues and support their data infrastructure needs.
  • Keep our data separated and secure across national boundaries through multiple data centers and AWS regions.
  • Create data tools for analytics and data scientist team members that assist them in building and optimizing our product into an innovative industry leader.
  • Work with data and analytics experts to strive for greater functionality in our data systems.

Qualifications for Data Engineer

  • Advanced working SQL knowledge and experience working with relational databases, query authoring (SQL) as well as working familiarity with a variety of databases.
  • Experience building and optimizing ‘big data’ data pipelines, architectures, and data sets.
  • Experience performing root cause analysis on internal and external data and processes to answer specific business questions and identify opportunities for improvement.
  • Strong analytic skills related to working with unstructured datasets.
  • Build processes supporting data transformation, data structures, metadata, dependency, and workload management.
  • A successful history of manipulating, processing, and extracting value from large disconnected datasets.
  • Working knowledge of message queuing, stream processing, and highly scalable ‘big data’ data stores.
  • Strong project management and organizational skills.
  • Experience supporting and working with cross-functional teams in a dynamic environment.
  • We are looking for a candidate with 5+ years of experience in a Data Engineer role, who has attained a Graduate degree in Computer Science, Statistics, Informatics, Information Systems, or another quantitative field. They should also have experience using the following software/tools:
  • Experience with big data tools: Hadoop, Spark, Kafka, etc.
  • Experience with relational SQL and NoSQL databases, including Postgres and Cassandra.
  • Experience with data pipeline and workflow management tools: Azkaban, Luigi, Airflow, etc.
  • Experience with AWS cloud services: EC2, EMR, RDS, Redshift.
  • Experience with stream-processing systems: Storm, Spark-Streaming, etc.
  • Experience with object-oriented/object function scripting languages: Python, Java, C++, Scala, etc.

Salary: 30000 per annum + benefits

Apply For This Job

If you would like to apply for this position, please fill in the information below and submit it to us for consideration.

The report will be handled by the HR Partner support team.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.