Clinical Data Scientist

PSI CRO
Oxford
1 year ago
Applications closed

Related Jobs

View all jobs

Analytics Specialist with Data Science

Real World Data Scientist (Associate Director)

Data Scientist

Data Scientist

Data Scientist (Home-based UK)

Technical Associate II, MSAT (Data Scientist)

Job Description

Reporting to the Clinical Data Science Manager, the Clinical Data Scientist is an integral part of our team here at PSI. You will work with clinical trials patient and operational data, develop new data solutions and set up Risk-based Monitoring systems in Process Improvement department.

Hybrid work in Oxford

  • Participate in selection of the Risk-Based Monitoring (RBM) system and provide relevant training to the project team and/or Sponsor
  • Set up and maintain RBM systems, collaborating with the Central Monitoring Manager
  • Manage complex datasets from multiple sources, including data extraction, transformation, and loading into PSI data platform
  • Program and produce data listings, tables, and figures for Clinical Data Reviewers and Central Monitoring Managers
  • Calculate Key Risk Indicators and Quality Tolerance Limits, applying advanced analytical techniques to identify data trends for Centralized Monitoring
  • Collaborate cross-functionally to identify study challenges and develop data solutions using advanced analytics
  • Communicate data findings and solutions to stakeholders effectively
  • Contribute to the development of databases, software products, processes, and Quality System Documents for Centralized Monitoring


Qualifications

Must have:

  • Degree in Data Science, Mathematics, Statistics, Computer Science or equivalent; or relevant work experience and professional qualifications
  • At least 5 years of experience in Data Management, Biostatistics, and Centralized Monitoring
  • At least 4 years of experience in one or more of the following: R, R Shiny, SAS, SQL and associated packages and libraries
  • At least 2-year experience in data engineering area including one or more of the following: relationship databases, data warehousing, data schemas, data stores, data modeling, testing, validation and analysis
  • Full professional proficiency in English
  • Strong analytical an logical thinking
  • Communication and collaboration skills

Nice to have:

  • Experience with CluePoints RBM system
  • Knowledge of statistical methods and techniques for analyzing data
  • Experience with using Machine Learning technics and products testing and validation



Additional Information

What we offer:

  • We value your time so the recruitment process is as quick as 3 meetings
  • We'll prepare you to do your job at highest quality level with our extensive onboarding and mentorship program
  • You'll have excellent working conditions - spacious and modern office in convenient location, and friendly, supportive team who love to hang out together 
  • You'll have permanent work agreement at a stable, privately owned company
  • We care about our employees - aside from competitive salary, you'll have good work-life balance with flexible working hours and additional days off, life and medical insurance, sports card, lunch card 
  • We're constantly growing which means opportunities for personal and professional growth 

Make the right call and take your career to a whole new level. Join the company that focuses on its people and invests in their professional development and success.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.