Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Climate Data Engineer

NatWest Group
Edinburgh
3 weeks ago
Applications closed

Related Jobs

View all jobs

SHEQ Data Analyst

Join us as a Climate Data Engineer

  • You'll be the voice of our customers, using data to tell their stories and put them at the heart of all decision-making
  • We'll look to you to drive the build of effortless, digital first customer experiences
  • If you're ready for a new challenge and want to make a far-reaching impact through your work, this could be the opportunity you're looking for

What you'll do

As a Climate Data Engineer, you'll be looking to simplify our organisation by developing innovative data driven solutions through data pipelines, modelling and ETL design, inspiring to be commercially successful while keeping our customers, and the bank's data, safe and secure.

You'll drive customer value by understanding complex business problems and requirements to correctly apply the most appropriate and reusable tool to gather and build data solutions. You'll support our strategic direction by engaging with the data engineering community to deliver opportunities, along with carrying out complex data engineering tasks to build a scalable data architecture.

Your responsibilities will also include:

  • Building advanced automation of data engineering pipelines through removal of manual stages
  • Embedding new data techniques into our business through role modelling, training, and experiment design oversight
  • Delivering a clear understanding of data platform costs to meet your departments cost saving and income targets
  • Sourcing new data using the most appropriate tooling for the situation
  • Developing solutions for streaming data ingestion and transformations in line with our streaming strategy

The skills you'll need

To thrive in this role, you'll need a strong understanding of data usage and dependencies and experience of extracting value and features from large scale data. You'll also bring practical experience of programming languages alongside knowledge of data and software engineering fundamentals. Knowledge of climate data sets and vendors would be advantageous.

Additionally, you'll need:

  • Experience of ETL technical design, data quality testing, cleansing and monitoring, data sourcing, and exploration and analysis
  • Data warehousing and data modelling capabilities
  • A good understanding of modern code development practices
  • Experience of working in a governed, and regulatory environment
  • Strong communication skills with the ability to proactively engage and manage a wide range of stakeholders
  • A solid understanding of key technologies within modern data pipelines, including Snowflake, AWS, DBT, DGF and Airflow
  • Proven experience working with cloud-based platforms and big data environments

Hours
35

Job Posting Closing Date:
26/08/2025

Ways of Working:Remote First
#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.