Chief Technology Officer

numi
2 months ago
Applications closed

Related Jobs

View all jobs

CTO Chief Technology Officer

Digital Transformation Manager

Security Engineer, Senior, London, Bank 75k

Senior SAP IBP Consultant

Senior Electrical Design Engineer - Hybrid Working

Senior Principle Electrical Engineer

‍ CTO– Shape the Future, Lead the Way

❤️ If you believe in Tech For Good. Then this place could be for you

Remote, ideally within a couple of hours time zone to London

Building a phenomenal company culture and workplace

Data, data, data driving global decision making

Basic + stock options, 3rd time Founders

Shape the future


Are You Ready to Build the Future of Scalable Technology and Transformative Data Solutions?

Imagine joining an early-stage company on a mission to redefine how data drives global decision-making. You’re someone who thrives on solving complex technical challenges, building world-class engineering teams, and delivering platforms that scale seamlessly—all while making a lasting impact.

This is your opportunity to lead as CTO in a company at the intersection of data, technology, and innovation. Here, your work will directly shape the future of a cutting-edge platform designed to transform how businesses and industries use data to drive measurable outcomes.


What You’ll Do

Shape the Technical Vision:Define and implement the company’s technology strategy, ensuring it aligns with long-term business goals.

Build a Scalable Platform:Develop a robust, automated platform that integrates data pipelines, machine learning, and advanced analytics.

Foster Innovation:Leverage your expertise to integrate cutting-edge ML models, reduce operational costs, and drive efficiency in data processing.

Lead and Inspire a High-Performing Team:Build and scale an exceptional engineering team, nurturing a culture of excellence, collaboration, and continuous improvement.

Drive Outcomes at Scale:Ensure the technology enables customers to make data-driven decisions effectively and efficiently while positioning the company as an industry leader.


You Are:

• Astrategic thinkerwith deep technical expertise in data pipelines, machine learning, and scalable architecture.

• Anexperienced leaderwho has built, scaled, and mentored engineering teams to deliver exceptional outcomes.

• Passionate about solving complex technical problems andexcited to work on projects that drive global impact.

• Collaborative, humble, and eager to engage with non-technical stakeholders, translating technical innovation into meaningful results.


What You Bring

• Proven expertise in full-stack development, includingPython, React, and cloud-native environmentslike AWS or Azure.

• A track record of building scalable, data-intensive platforms and integratingML modelsinto production environments.

• Hands-on experience transitioning from prototype to scalable systems, including automation of workflows.

• Leadership experience in early-stage or high-growth environments, with a focus on team building, technical execution, and long-term strategic planning.


Why This Role?

Impact at Scale:Your work will directly shape a platform poised to revolutionise how industries utilise data.

A Collaborative, Mission-Driven Culture:Join a team of smart, motivated individuals united by a shared vision.

A Rare Opportunity to Build:Lay the foundations for a scalable, high-impact platform while fostering a thriving engineering culture.

Competitive Compensation and Equity:Reflecting the high stakes and immense potential of your contribution.


Location:Remote-first, ideally within two hours of GMT (or similar European time zones).

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.