Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

C# Data Engineer (Risk)- Tech-Driven Global Hedge Fund

Oxford Knight
London
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Market Data Engineer (C++)

Senior Data Engineer

Senior Data Engineer

GenAI Data Engineer

GenAI Data Engineer

Python Data Engineer

The Client

One of the world's largest hedge funds, this is an excellent opportunity to join one of the most prestigious technology teams in systematic trading in a wide-ranging development role. With a flat-structured, 'no-attitude' working environment, this is a great time to join as engineering is undergoing significant investment.

The Role

Looking for a highly motivated and experienced engineer to join the Risk Data team, this role offers the opportunity to expand your current skillset creating state-of-the-art tools for a range of data-related activities, including onboarding, analysis, sourcing, quality checking, and lifecycle management.

You'll collaborate with Risk Officers as well as analysts, quants and engineers, delivering risk solutions for specific engine/strategy requirements or for the whole company. You'll also design and develop solutions to solve big data challenges (200 terabyte of data).

The majority of the company's systems run on Windows and most code is written in .NET (C#); their first data storage is in SQL Server, and they're starting to use ArcticDb for larger datasets. But they're also constantly evaluating new technologies, tools and libraries.

Requirements

  1. Expert programming experience (ideally in .NET)
  2. Understanding of the challenges of dealing with large datasets (structured and unstructured)
  3. Solid Windows platforms experience with various scripting languages, and exposure to Linux environments
  4. Knowledge of modern practices for ETL, data engineering and stream processing
  5. Degree with high mathematical and computing content - Computer Science, Mathematics, Engineering, Physics, etc. - from a top-tier university
  6. Working knowledge of one or more database technologies, e.g. SQL Server

Nice to have

  1. Prior experience of working with financial market data or alternative data
  2. Relevant mathematical knowledge e.g. statistics, time-series analysis
  3. Experience with Python, Kubernetes, S3 or Kafka

Benefits

  1. Competitive salary + generous bonuses
  2. Extra perks including a personal development allowance and sponsorship
  3. Central London office with a very smart, friendly tech team
  4. Flat-structured, transparent and collaborative environment, 'no-attitude' culture
  5. Regular social events, plus annual company trips and team offsites

Contact

To apply for this role, or for further information, please contact:

Maia Ellis


linkedin.com/in/maia-ellis-38a577193

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.