Bus Safety Operator

Oxa
Belfast
1 month ago
Applications closed

Related Jobs

View all jobs

Embedded Software Engineer

Integration Developer

Remote .NET Developer

Lead Data Engineer - MLOps

Who are we?

Oxa is enabling the transition to self-driving vehicles through an initial focus on the most commercially advanced sector; the autonomous shuttling of goods and people.

We are home to some of the world’s leading experts on autonomous vehicles, creating solutions such as Oxa Driver, equipping vehicles with full self-driving functionality; Oxa MetaDriver, using Generative AI to accelerate and assure the safety of deployments; and Oxa Hub, a set of cloud-based offerings for autonomous fleet management. Our technology is being deployed across the UK and the U.S, and we’re partnering with a fast-growing ecosystem of operators, vehicle OEMs and equipment makers serving autonomous transportation globally as it advances.

The Role

As our Bus Safety Operator, you will Drive / Operate our fleet of self-driving Buses both manually and autonomously for testing and for live passenger services in a safe and professional manner. For the time that you are not driving or operating vehicles, you will need to write up your notes and share those with relevant parties. This is a fixed term / contract position for circa 5 months.

You must be happy to: 

  • Complete field notes, report safety issues and update Oxa Cloud. 
  • Feedback your thoughts and experiences to your peers, the Test Engineer and Software teams. 
  • Share your ideas with your team and the wider business in a respectful manner.
  • Listen to company communications and absorb and action where necessary. 

Requirements

What you will need for this role: 

  • Demonstrate several years of driving experience, as a professional Bus Driver / PSV / private hire driver, with a clean licence including category D. 
  • Demonstrate a very high level of concentration. 
  • Possess excellent judgement of live road and traffic situations. 

Extra kudos if you have: 

  • Advanced driving qualifications Driver Training qualifications 
  • Experience working with prototype test vehicles 
  • Experience in testing vehicles on proving grounds or race / closed road environments 
  • Experience of working as a vehicle technician (mechanical & electrical tasks) 
  • Experience with drones and/or radio/remote controlled vehicles 
  • An interest in robotics and computing

Benefits

Our Culture:

We promote an open and inclusive culture that empowers our Oxbots to bring their whole, authentic selves to work every day. Oxa is proud to be an inclusive organisation and, as such, we require all team members within our recruitment process to understand and deploy best practices focused on de-biasing the whole recruitment cycle. We also apply a neuro inclusive lens to our recruitment process and want each potential Oxbot to enjoy the best experience possible for them. Please share with us any individual needs or reasonable adjustments we may need to make in advance of commencing the interview process with us.

Learn more about our culture here

Why become an Oxbot?

Our team of engineers, mathematicians and experts in AI, machine learning and much else is truly world-class. They are solving the most exciting and important technological challenges of our times.

But as well as smarts, Oxbots have heart. Our diverse, multi-cultural crew is guided by a shared vision to bring the myriad benefits of autonomy to our customers and partners. And in a company that celebrates uniqueness as much as skill and experience, we do it with energy, conviction and a healthy dose of excitement too. If you are bold, creative and hyper skilled, come and create the future of autonomy with us at Oxa.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.