Baseball Analyst / Data Scientist

Miami Marlins and loanDepot park
Tipton
4 days ago
Create job alert

At the Miami Marlins, we make waves — on and off the field.

We’re built for sustainable success thanks to our commitment to be great teammates, bold innovators, and thinking long-term. These three pillars guide us in championing a winning culture across the organization. The work we do doesn’t just impact our team — it reaches fans and communities across South Florida.

Position Summary

As a Baseball Analyst in Baseball Solutions or a Data Scientist in Baseball Research, you will be responsible for supporting the department in developing sophisticated statistical models, advancing our ability to forecast player performance, and translating insights into actionable recommendations for the Miami Marlins front office. These roles involve prioritizing and executing research requests, creating innovative models, and collaborating with other departments across baseball operations. Strong statistical modeling skills, technical expertise, ability to communicate to technical and non-technical audiences, and a passion for baseball are essential for success in these positions. Note that these are two separate positions, and applicants will automatically be considered for both positions.

Essential Functions

Construct advanced statistical models to support decision-making within Baseball Operations. Convert key baseball (and physical) concepts into metrics, features, and insights for consumption by the Baseball Solutions and Baseball Research departments, as well as those outside of R&D. Develop and maintain production pipelines for daily implementation of statistical models. Collaborate with other analysts, engineers, and stakeholders to identify opportunities for improvement. Manage and clean large datasets from various sources. Provide actionable insights through detailed statistical analysis. Assist with recruiting and evaluating applicants to join the Baseball R&D team. Create and maintain documentation outlining departmental best practices.

Our Values

We Are Great Teammates

Supports and encourages colleagues.Provides and receives feedback without judgement or ego.Holds one another to a high standard.Provides help and encouragement proactively.Assumes positive intentions from others. Looks for ways to help make their teammates better.

We Are Innovators

Embraces a growth mindset.Challenges conventional wisdom.Unafraid to fail.Pushes boundaries and doesn't accept impossible.Asks why and asks why not.

We Think Long-Term

Asks: what can I do today that will pay off a year from now. Eschews instant gratification for bigger benefits in the future.Always trying to think three steps ahead.

Skill Requirements

Proficiency in programming languages such as Python, R, and SQL.Experience in advanced modeling approaches preferred (Bayesian methods, neural networks, time-series forecasting)Experience with probabilistic programming languages preferred (Stan, PyMC)Strong analytical and problem-solving skills.Excellent written and verbal communication skills.Ability to manage multiple tasks and meet deadlines.Collaborative mindset and willingness to work in a team environment.Willingness to relocate to Miami and commute to loanDepot Park.Familiarity with public baseball research.Experience with Git and cloud-based computing preferred.

Education & Experience Guidelines

Bachelor’s degree in Statistics, Mathematics, Data Science, or a related quantitative field. Graduate degree is preferred, or equivalent real-world experience.0-2 years of experience in a data analysis role.Note that education may be considered in lieu of experience and vice-versa.Experience in a baseball or sports-related environment is preferred.

Work Environment

Ability to work flexible hours, including evenings, weekends, and holidays as needed.Occasional travel may be required.Standard office working conditions with extended periods of sitting and working on a computer.

We are an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, national origin, sex, sexual orientation, age, disability, gender identity, marital, or veteran status, or any other protected status.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.