Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Backend Software Engineer

CATCHES
Liverpool
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Backend Software Engineer (Python) in London - NLPatent

Real-Time Data Engineer: ML Pipelines, Equity, Remote

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Data Engineer - DeFi

Location:Fully remote with the opportunity of working in a co-working space local to you


About:

CATCHES are a SaaS start-up backed by some of the most influential names in luxury fashion globally. We've partnered with the global leaders in cloud computing and AI to integrate advanced 3D rendering, Artificial Intelligence (AI) and Visual Effects (VFX) techniques to create unparalleled shopping experiences for luxury fashion and exclusive events.


Role:

We are seeking a highly skilled Backend Software Engineer to join our team. The ideal candidate will have experience building APIs and backend services, ideally in C#.NET.

In this role, you’ll build robust, scalable, and secure backend systems powering our SaaS platform. You will collaborate closely with the frontend team, data engineers, and other stakeholders to deliver high-quality software solutions that meet our product's needs.

You’ll have input into technical direction and contribute to shaping backend architecture as we scale.


Responsibilities:

  • Design, develop, and maintain APIs and services primarily usingC#.NET.
  • Build scalable, fault-tolerant systems for a cloud-native environment (primarilyGCP).
  • Implement event-driven workflows usingRabbitMQ.
  • Collaborate with product, design, data, and frontend teams to ship end-to-end features.
  • Own your code in production, participate in code reviews, and improve system observability.
  • Champion clean code, security best practices, and scalable architecture.


Requirements:

  • 4+ years experience building backend systems, ideally in C#.NET.
  • Solid grasp ofPostgreSQLor equivalent relational databases.
  • Cloud deployment experience (GCP preferred, but AWS/Azure welcome).
  • Comfort withevent-driven architecturesandmessage queues.
  • Experience shipping production-grade systems with performance, security, and observability in mind.
  • Ability to work independently in a fast-moving, startup environment.
  • Strong communication skills and a collaborative mindset.
  • Experience delivering pragmatic solutions and implementing iterative design approaches.
  • Strong understanding of engineering fundamentals, including design patterns, SOLID principles, and clean code.


Nice to Have:

  • NoSQL Database experience.
  • Experience withKubernetesor other orchestration systems.
  • Exposure tobare metaldeployments or hybrid cloud environments.
  • DevOps practices: Infrastructure as Code, monitoring, and alerting.
  • Some experience with frontend development or WebGL/3D rendering pipelines.


What Working with Catches Looks Like:

  • Workfully remotewith optional coworking access.
  • Be part of asmall, experienced teamthat values shipping, experimentation, and autonomy.
  • Contribute early to product and architecture decisions.
  • Use cutting-edge tech to shape the future of immersive eCommerce.
  • Enjoy startup pace without burnout: async-first, high ownership, minimal meetings.


Tech Stack:

  • Languages: C#.NET (primary), Go, Python.
  • Databases: Postgres, Redis.
  • Messaging: RabbitMQ.
  • Infra: Docker, Kubernetes, GCP (primary), AWS, Azure & bare-metal.
  • CI/CD: GitHub Actions.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.