BA with (Data Analyst)

N Consulting Ltd
London
2 months ago
Applications closed

Related Jobs

View all jobs

Service Now Architect

e-Discovery Manager

Software Engineer III - Python, Cloud Data - Senior Associate

Role : Business Analyst

Domain : Banking Domain experience

Location : London

Experience : 6-9 Years

 

 

Job Description

 

Banking experience required.

 

Accountabilities:

  • Investigate and analyse data issues related to quality, lineage, controls, and authoritative source identification.
  • Execute data cleansing and transformation tasks to prepare data for analysis.
  • Design and build data pipelines to automate data movement and processing.
  • Develop and apply advanced analytical techniques, including machine learning and AI, to solve complex business problems.
  • Document data quality findings and recommendations for improvement.

 

Expectations:

  • Advise key stakeholders, including functional leadership teams and senior management, on functional and cross-functional areas of impact and alignment.
  • Manage and mitigate risks through assessment, supporting the control and governance agenda.
  • Demonstrate leadership and accountability for managing risk and strengthening controls in relation to the work your team does.
  • Demonstrate comprehensive understanding of the organization’s functions to contribute to achieving business goals.
  • Collaborate with other areas of work for business-aligned support areas to keep up to speed with business activity and strategies.
  • Create solutions based on sophisticated analytical thought, comparing, and selecting complex alternatives. In-depth analysis with interpretative thinking will be required to define problems and develop innovative solutions.
  • Adopt and include the outcomes of extensive research in problem-solving processes.
  • Seek out, build, and maintain trusting relationships and partnerships with internal and external stakeholders to accomplish key business objectives, using influencing and negotiating skills to achieve outcomes.
  • Communicate insights and findings to stakeholders, ensuring that the information is understood and actionable

 

Additional Job Description: Join us as a Data Analyst at Barclays, where you will interpret data to provide insights that drive strategic decision-making across the business. You will collaborate with various teams to optimize processes, enhance data-driven strategies, and ensure compliance with industry regulations.

 

To be successful as a Data Analyst, you should have experience with:

  • Capturing business requirements and translating them into technical data requirements.
  • Logical data modelling (e.g., ERWIN, Archi, MagicDraw).
  • Analytical literacy within a complex end-to-end architecture and data analysis tooling (Python, R, SQL).
  • Background in the investment banking industry with good product knowledge in at least one asset class is desirable.
  • Knowledge of Wholesale Markets business and related data flows.
  • Sound grasp of the front-to-back process of an investment bank.
  • Strong analytical skills, able to demonstrate flexibility in problem-solving.
  • Enthusiastic and demonstrates a can-do attitude through appropriate behaviours.
  • Willingness and ability to share information, transfer knowledge, and expertise to team members.

 

 

Highly valued skills may include:

  • Experience in Business/Data analysis and storytelling methods to present complex data issues in a simple and engaging manner.
  • Passion for and commitment to ensuring data quality with meticulous attention to detail.
  • Experience in data and operating model process re-engineering and ownership.
  • Exposure to data integration design strategies for both internal and external customer usage.
  • Strong written and verbal communication skills, including documentation, and experience working with various stakeholders ranging from different business areas, technology, and project team members.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.

Machine Learning Programming Languages for Job Seekers: Which Should You Learn First to Launch Your ML Career?

Machine learning has swiftly become a cornerstone of modern technology, transforming entire industries—healthcare, finance, e-commerce, and beyond. As a result, demand for machine learning engineers, data scientists, and ML researchers continues to surge, creating a rich landscape of opportunity for job seekers. But if you’re new to the field—or even an experienced developer aiming to transition—the question arises: Which programming language should you learn first for a successful machine learning career? From Python and R to Scala, Java, C++, and Julia, the array of choices can feel overwhelming. Each language boasts its own community, tooling ecosystem, and industry use cases. This detailed guide, crafted for www.machinelearningjobs.co.uk, will help you align your learning path with in-demand machine learning roles. We’ll delve into the pros, cons, and ideal use cases for each language, offer a simple starter project to solidify your skills, and provide tips for leveraging the ML community and job market. By the end, you’ll have the insights you need to confidently pick a language that catapults your machine learning career to new heights.