Azure Data Engineer (Databricks)

慨正橡扯
London
10 months ago
Applications closed

Related Jobs

View all jobs

Azure Data Engineer

Azure Data Engineer / BI Developer

Azure Data Engineer

Azure Data Engineer

Senior Data Engineer/ PowerBI

Technical Data Engineer / Analyst

Azure Data Engineer (Databricks) Joining Capco meansjoining an organisation that is committed to an inclusive workingenvironment where you’re encouraged to #BeYourselfAtWork. Wecelebrate individuality and recognize that diversity and inclusion,in all forms, is critical to success. It’s important to us that werecruit and develop as diverse a range of talent as we can and webelieve that everyone brings something different to the table – sowe’d love to know what makes you different. Such differences maymean we need to make changes to our process to allow you the bestpossible platform to succeed, and we are happy to cater to anyreasonable adjustments you may require. You will find the sectionto let us know of these at the bottom of your application form oryou can mention it directly to your recruiter at any stage and theywill be happy to help. Why Join Capco? Capco is a global technologyand business consultancy, focused on the financial services sector.We are passionate about helping our clients succeed in anever-changing industry. You will work on engaging projects withsome of the largest banks in the world, on projects that willtransform the financial services industry. We are/have: - Expertsin banking and payments, capital markets and wealth and assetmanagement - Deep knowledge in financial services offering,including e.g. Finance, Risk and Compliance, Financial Crime, CoreBanking etc. - Committed to growing our business and hiring thebest talent to help us get there - Focused on maintaining ournimble, agile and entrepreneurial culture As a Data Engineer atCapco you will: - Work alongside clients to interpret requirementsand define industry-leading solutions - Design and develop robust,well-tested data pipelines - Demonstrate and help clients adhere tobest practices in engineering and SDLC - Have excellent knowledgeof building event-driven, loosely coupled distributed applications- Have experience in developing both on-premise and cloud-basedsolutions - Possess a good understanding of key securitytechnologies and protocols e.g. TLS, OAuth, Encryption - Supportinternal Capco capabilities by sharing insight, experience andcredentials Why Join Capco as a Data Engineer? - You will work onengaging projects with some of the largest banks in the world, onprojects that will transform the financial services industry. -You’ll be part of a digital engineering team that develops new andenhances existing financial and data solutions, having theopportunity to work on exciting greenfield projects as well as onestablished Tier 1 bank applications adopted by millions of users.- You’ll be involved in digital and data transformation processesthrough a continuous delivery model. - You will work on automatingand optimising data engineering processes, developing robust andfault-tolerant data solutions both on cloud and on-premisedeployments. - You’ll be able to work across different data, cloudand messaging technology stacks. - You’ll have an opportunity tolearn and work with specialised data and cloud technologies towiden your skill set. Skills & Expertise: You will haveexperience working with some of the followingMethodologies/Technologies; Required Skills - Hands-on workingexperience of the Databricks platform. Must have experience ofdelivering projects which use DeltaLake, Orchestration, UnityCatalog, Spark Structured Streaming on Databricks. - Extensiveexperience using Python, PySpark and the Python Ecosystem with goodexposure to Python libraries. - Experience with Big Datatechnologies and Distributed Systems such as Hadoop, HDFS, HIVE,Spark, Databricks, Cloudera. - Experience developing near real-timeevent streaming pipelines with tools such as – Kafka, SparkStreaming, Azure Event Hubs. - Excellent experience in the DataEngineering Lifecycle, having created data pipelines which takedata through all layers from generation, ingestion, transformationand serving. - Experience of modern Software Engineering principlesand experience of creating well-tested, clean applications. -Experience with Data Lakehouse architecture and data warehousingprinciples, experience with Data Modelling, Schema design and usingsemi-structured and structured data. - Proficient in SQL & goodunderstanding of the differences and trade-offs between SQL andNoSQL, ETL and ELT. - Proven experience in DevOps and buildingrobust production data pipelines, CI/CD Pipelines on e.g. AzureDevOps, Jenkins, CircleCI, GitHub Actions etc. Desirable Skills -Experience developing in other languages e.g. Scala/Java. -Enthusiasm and ability to pick up new technologies as needed tosolve problems. - Exposure to working with PII, Sensitive Data andunderstanding data regulations such as GDPR.#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.