Azure AI Engineer

London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Scientist/AI Engineer

AI Engineer

Principal Machine Learning Engineer, Director (London)

Principal Machine Learning Engineer, Director (London)

AI Solutions Architect (R122902 AI Solutions Architect)

AI Solutions Architect (R122902 AI Solutions Architect) (Hiring Immediately)

Azure AI Engineer
Remote UK
£60,000 - £80,000 (DOE) + Holiday + Pension + Healthcare + Remote Working + Great working Culture + Autonomy

This is an exciting opportunity for an Azure AI Engineer to join a fast-growing company that offers autonomy, career growth, and a highly competitive salary.

The company specialises in developing innovative software and AI-driven solutions for the fashion industry, with all technologies designed and built in-house by expert software professionals. Due to increasing demand, they are expanding their senior leadership team to drive innovation and support continued growth.

In this role, you will design, develop, and deploy AI-driven solutions using Microsoft Azure, leveraging services such as Azure Machine Learning and Cognitive Services. You will integrate AI models into cloud-based applications, ensuring scalability and performance. Your responsibilities will include training and fine-tuning machine learning models, automating AI workflows, optimising cloud infrastructure, and ensuring compliance with security and governance standards.

The ideal candidate will have strong experience in developing and deploying AI solutions using Microsoft Azure, with expertise in Azure Machine Learning and Cognitive Services. Proficiency in programming languages such as Python or C#, along with experience in machine learning frameworks is essential. A deep understanding of cloud architecture, data engineering, and MLOps is required. Additionally, the candidate should have the ability to optimise AI models for scalability, and a solid grasp of security and compliance in cloud environments. Azure/AI certifications would be beneficial but not essential.

The Role:

Design, develop, and deploy AI-driven solutions using Microsoft Azure.
Leverage Azure Machine Learning and Cognitive Services for AI development.
Integrate AI models into cloud-based applications for scalability and performance.
Train and fine-tune machine learning models to enhance accuracy and efficiency.
Automate AI workflows and optimize cloud infrastructure.
Ensure compliance with security and governance standards.
The Person:

Strong experience in developing and deploying AI solutions using Microsoft Azure.
Expertise in Azure Machine Learning and Cognitive Services.
Proficiency in programming languages such as Python or C#.
Experience with machine learning frameworks like TensorFlow or PyTorch.
Deep understanding of cloud architecture, data engineering, and MLOps.
Ability to optimize AI models for scalability and performance.
Knowledge of security and compliance in cloud environments.
Azure/AI certifications are beneficial but not essential

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.