Azure AI Engineer

London
1 month ago
Applications closed

Related Jobs

View all jobs

Machine Learning and AI Engineering Lead

Machine Learning Engineer, London

Machine Learning Engineer, London

Azure Data Engineer (AI / ML)

Graduate AI Engineer

Data Scientist / AI Engineer

Azure AI Engineer
Remote UK
£60,000 - £80,000 (DOE) + Holiday + Pension + Healthcare + Remote Working + Great working Culture + Autonomy

This is an exciting opportunity for an Azure AI Engineer to join a fast-growing company that offers autonomy, career growth, and a highly competitive salary.

The company specialises in developing innovative software and AI-driven solutions for the fashion industry, with all technologies designed and built in-house by expert software professionals. Due to increasing demand, they are expanding their senior leadership team to drive innovation and support continued growth.

In this role, you will design, develop, and deploy AI-driven solutions using Microsoft Azure, leveraging services such as Azure Machine Learning and Cognitive Services. You will integrate AI models into cloud-based applications, ensuring scalability and performance. Your responsibilities will include training and fine-tuning machine learning models, automating AI workflows, optimising cloud infrastructure, and ensuring compliance with security and governance standards.

The ideal candidate will have strong experience in developing and deploying AI solutions using Microsoft Azure, with expertise in Azure Machine Learning and Cognitive Services. Proficiency in programming languages such as Python or C#, along with experience in machine learning frameworks is essential. A deep understanding of cloud architecture, data engineering, and MLOps is required. Additionally, the candidate should have the ability to optimise AI models for scalability, and a solid grasp of security and compliance in cloud environments. Azure/AI certifications would be beneficial but not essential.

The Role:

Design, develop, and deploy AI-driven solutions using Microsoft Azure.
Leverage Azure Machine Learning and Cognitive Services for AI development.
Integrate AI models into cloud-based applications for scalability and performance.
Train and fine-tune machine learning models to enhance accuracy and efficiency.
Automate AI workflows and optimize cloud infrastructure.
Ensure compliance with security and governance standards.
The Person:

Strong experience in developing and deploying AI solutions using Microsoft Azure.
Expertise in Azure Machine Learning and Cognitive Services.
Proficiency in programming languages such as Python or C#.
Experience with machine learning frameworks like TensorFlow or PyTorch.
Deep understanding of cloud architecture, data engineering, and MLOps.
Ability to optimize AI models for scalability and performance.
Knowledge of security and compliance in cloud environments.
Azure/AI certifications are beneficial but not essential

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.