Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

AWS Data Engineer AVP - Top Investment Bank

Caspian One
London
20 hours ago
Create job alert

About the Role

Join a mission-critical team within our firm’s cutting-edge platform engineering function, supporting platform for front-office developers (quants and strategists) in a unique hands-on opportunity within a focused, high-impact team.


You’ll be at the forefront of data and cloud-native engineering, working with modern technologies across AWS, On-premise kubernetes, Python, and data pipelines, while engaging directly with key internal platforms and front-office business developers. If you are passionate about solving hard technical problems, staying current with trends like AI Engineering, and want to make a difference in a globally respected financial institution, this role is for you.


The successful AWS Data Engineer candidate will have the chance to make a significant impact in designing the platform and working on cutting-edge technologies like Databricks and Snowflake in the heart of a leading global Investment Banks’ front-office. This is a rare greenfield role that offers the opportunity to solve the ultimate data pipeline challenge faced by all banks, working closely with various businesses and gaining an overview of many different sectors.


What We’re Looking For

  • 5 + years, hands-on experience in AWS data engineering technologies, including Glue, PySpark, Athena, Iceberg, Databricks, Lake Formation, and other standard data engineering tools.
  • Strong experience engineering in a front-office/capital markets environment.
  • Previous experience in implementing best practices for data engineering, including data governance, data quality, and data security.
  • Proficiency in data processing and analysis using Python and SQL.
  • Experience with data governance, data quality, and data security best practices.
  • Strong knowledge of market data and its applications.
  • Understanding of Generative AI concepts, along with hands-on experience in developing and deploying AI applications in real-world environments.


Nice to Have

  • Experience with other data engineering tools and technologies.
  • Knowledge of Machine Learning / AI and data science concepts.


Accountabilities

  • To build and maintain the systems that collect, store, process, and analyse data, such as data pipelines, data warehouses and data lakes to ensure that all data is accurate, accessible, and secure.
  • Build and maintenance of data architectures pipelines that enable the transfer and processing of durable, complete and consistent data.
  • Design and implementation of data warehoused and data lakes that manage the appropriate data volumes and velocity and adhere to the required security measures.
  • Development of processing and analysis algorithms fit for the intended data complexity and volumes.
  • Collaboration with data scientist to build and deploy machine learning models.

Related Jobs

View all jobs

AWS Data Engineer

AWS Data Engineer - (Python/PySpark/Aws Services/Unit testing/CI/CD/Gitlab/Banking)

AWS Data Engineer: PySpark + Python Cloud Pipelines

Lead Data Engineer (AWS)

Senior Data Engineer: Python, Databricks & AWS

Data Engineer – SC Cleared - AWS

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.