AWS Data Engineer - Amazon Web Services

Farringdon
2 months ago
Applications closed

Related Jobs

View all jobs

AWS Data Engineer - Python

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Data Engineer (AD -Consulting) - Exclusive

My client is a Global IT Consultancy, who are currently looking for multiple Data Engineers to join their team. This is a permanent position and represents a unique opportunity for someone to enhance their digital career.

AWS Data Engineer

Salary guideline: £60,000 - £85,000 pa + pension up to 6% contributory, Health Insurance, Life Assurance etc.

Base Location: UK Wide - Hybrid model

The Client:

We are excited to be offering this opportunity for a talented AWS DATA Engineer to join my clients rapidly expanding team. My client is a Global IT Consultancy, who are currently looking for multiple Data Engineers to join their teams in London and Manchester. This is a permanent position and represents a unique opportunity for someone to enhance their digital career.

The Role:

Essential Skills and Experience:

Have a deep, hands-on design and engineering background in AWS, across a wide range of AWS services with the ability to demonstrate working on large engagements

Experience of AWS tools (e.g Athena, Redshift, Glue, EMR)
Java, Scala, Python, Spark, SQL
Experience of developing enterprise grade ETL/ELT data pipelines.
Deep understanding of data manipulation/wrangling techniques
Demonstrable knowledge of applying Data Engineering best practices (coding practices to DS, unit testing, version control, code review).
Big Data Eco-Systems, Cloudera/Hortonworks, AWS EMR, GCP DataProc or GCP Cloud Data Fusion.
NoSQL Databases. Dynamo DB/Neo4j/Elastic, Google Cloud Datastore.
Snowflake Data Warehouse/Platform
Streaming technologies and processing engines, Kinesis, Kafka, Pub/Sub and Spark Streaming.
Experience of working with CI/CD technologies, Git, Jenkins, Spinnaker, GCP Cloud Build, Ansible etc
Experience building and deploying solutions to Cloud (AWS, Google Cloud) including Cloud provisioning tools
Have hands on experience with Infrastructure-as-Code technologies: Terraform, Ansible
Capable of working in either an agile or Waterfall development environment, both as part of a team and individually
E2E Solution Design skills - Prototyping, Usability testing
Experience with SQL and NoSQL modern data stores
Strong interpersonal skills with the ability to work with clients to establish requirements in non-technical language.
Ability to translate business requirements into plausible technical solutions for articulation to other development staff.
Good understanding of Data Governance, including Master Data Management (MDM) and Data Quality tools and processes
Influencing and supporting project delivery through involvement in project/sprint planning and QAAlso:

Knowledge of other cloud platforms
Google Data Products tools knowledge (e.g. BigQuery, Dataflow, Dataproc, AI Building Blocks, Looker, Cloud Data Fusion, Dataprep, etc.) Relevant certifications
Python
Snowflake
Databricks To apply please click the "Apply" button and follow the instructions.

For a further discussion, please contact Aaron Perdesi on (phone number removed).

83zero Consulting Limited is a boutique consultancy specialising in Software Development & Agile within the UK. We provide high quality interim and permanent senior IT professionals

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.