AWS Data Engineer - Amazon Web Services

Farringdon
11 months ago
Applications closed

Related Jobs

View all jobs

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

My client is a Global IT Consultancy, who are currently looking for multiple Data Engineers to join their team. This is a permanent position and represents a unique opportunity for someone to enhance their digital career.

AWS Data Engineer

Salary guideline: £60,000 - £85,000 pa + pension up to 6% contributory, Health Insurance, Life Assurance etc.

Base Location: UK Wide - Hybrid model

The Client:

We are excited to be offering this opportunity for a talented AWS DATA Engineer to join my clients rapidly expanding team. My client is a Global IT Consultancy, who are currently looking for multiple Data Engineers to join their teams in London and Manchester. This is a permanent position and represents a unique opportunity for someone to enhance their digital career.

The Role:

Essential Skills and Experience:

Have a deep, hands-on design and engineering background in AWS, across a wide range of AWS services with the ability to demonstrate working on large engagements

Experience of AWS tools (e.g Athena, Redshift, Glue, EMR)
Java, Scala, Python, Spark, SQL
Experience of developing enterprise grade ETL/ELT data pipelines.
Deep understanding of data manipulation/wrangling techniques
Demonstrable knowledge of applying Data Engineering best practices (coding practices to DS, unit testing, version control, code review).
Big Data Eco-Systems, Cloudera/Hortonworks, AWS EMR, GCP DataProc or GCP Cloud Data Fusion.
NoSQL Databases. Dynamo DB/Neo4j/Elastic, Google Cloud Datastore.
Snowflake Data Warehouse/Platform
Streaming technologies and processing engines, Kinesis, Kafka, Pub/Sub and Spark Streaming.
Experience of working with CI/CD technologies, Git, Jenkins, Spinnaker, GCP Cloud Build, Ansible etc
Experience building and deploying solutions to Cloud (AWS, Google Cloud) including Cloud provisioning tools
Have hands on experience with Infrastructure-as-Code technologies: Terraform, Ansible
Capable of working in either an agile or Waterfall development environment, both as part of a team and individually
E2E Solution Design skills - Prototyping, Usability testing
Experience with SQL and NoSQL modern data stores
Strong interpersonal skills with the ability to work with clients to establish requirements in non-technical language.
Ability to translate business requirements into plausible technical solutions for articulation to other development staff.
Good understanding of Data Governance, including Master Data Management (MDM) and Data Quality tools and processes
Influencing and supporting project delivery through involvement in project/sprint planning and QAAlso:

Knowledge of other cloud platforms
Google Data Products tools knowledge (e.g. BigQuery, Dataflow, Dataproc, AI Building Blocks, Looker, Cloud Data Fusion, Dataprep, etc.) Relevant certifications
Python
Snowflake
Databricks To apply please click the "Apply" button and follow the instructions.

For a further discussion, please contact Aaron Perdesi on (phone number removed).

83zero Consulting Limited is a boutique consultancy specialising in Software Development & Agile within the UK. We provide high quality interim and permanent senior IT professionals

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.