AWS Architect

Expert Employment
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist - Contract

BI Data Analyst

Lead Data Engineer

Data Engineer

Senior AWS Data Engineer: Scalable ETL & Data Warehousing

Senior AWS Data Engineer: Real-Time Data Pipelines

AWS Cloud Architect required to create cloud service infrastructure for IoT enabled cloud services on AWS.

This is a senior role that will require high-level design, coding, implementation, and initial maintenance of a highly scalable system destined for global deployment across various customer configurations, each with thousands of endpoints.

Toolchain specification and build will be needed to:

  1. Test solutions
  2. Integrate architectures
  3. Scale the platform
  4. Adapt as requirements dictate


Key Skills:

  1. AWS with Docker containers and ideally an IoT component
  2. Cloud computing fundamentals: OOD/Object Oriented Design, resilient data structures, algorithm design, and Algorithm Complexity Analysis
  3. Software engineering experience of the full software development life cycle: requirements, test, regression testing, Continuous Integration, source control management, build processes, and documentation
  4. Programming languages: Python, JavaScript, TypeScript, or C#
  5. Stored and streamed data
  6. Data science model deployment and monitoring


The Cloud Architect's growing team will be the technical center point coordinating and directing as needed:

  1. Front-end developers on real-time analytics, location tracking, insights, and data visualization
  2. Embedded software development team on real-time data acquisition and transmission protocols
  3. Cyber security analysts on threat prevention and platform access

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.