▷ Apply in 3 Minutes: Machine Learning Engineer, EnterpriseResearch London, UK

Scale AI, Inc.
London
1 day ago
Create job alert

AI is becoming vitally important in every function ofour society. At Scale, our mission is to accelerate the developmentof AI applications. For 8 years, Scale has been the leading AI datafoundry, helping fuel the most exciting advancements in AI,including generative AI, defense applications, and autonomousvehicles. With our recent Series F round, we’re accelerating theusage of frontier data and models by building complex agents forenterprises around the world through our Scale Generative AIPlatform (SGP). The SGP ML team works on the front lines of this AIrevolution. We interface directly with clients to build cuttingedge products using the arsenal of proprietary research andresources developed at Scale. As an ML Engineer, you’ll work withclients to train ML models to satisfy their business needs. Yourwork will range from training next-generation AI cybersecurityfirewall LLMs to training foundation genomic models makingpredictions about life-saving drug proteins. Having a deepcuriosity about the hardest questions about LLMs will also motivatevarious research opportunities on how to apply ML to the forefrontof enterprise data. If you are excited about shaping the future ofthe modern AI movement, we would love to hear from you! You will: -Train state of the art models, developed both internally and fromthe community, in production to solve problems for our enterprisecustomers. - Work with product and research teams to identifyopportunities for ongoing and upcoming services. - Exploreapproaches that integrate human feedback and assisted evaluationinto existing product lines. - Create state of the art techniquesto integrate tool-calling into production-serving LLMs. - Workclosely with customers - some of the most sophisticated MLorganizations in the world - to quickly prototype and build newdeep learning models targeted at multi-modal content understandingproblems. Ideally you’d have: - At least 1-3 years of modeltraining, deployment and maintenance experience in a productionenvironment - Strong skills in NLP, LLMs and deep learning - Solidbackground in algorithms, data structures, and object-orientedprogramming - Experience working with a cloud technology stack (eg.AWS or GCP) and developing machine learning models in a cloudenvironment - Experience building products with LLMs includingknowing the ins and outs of evaluation, experimentation, anddesigning solutions to get the most of the models - PhD or Mastersin Computer Science or a related field Nice to haves: - Experiencein dealing with large scale AI problems, ideally in thegenerative-AI field - Demonstrated expertise in largevision-language models for diverse real-world applications, e.g.classification, detection, question-answering, etc. - Publishedresearch in areas of machine learning at major conferences(NeurIPS, ICML, EMNLP, CVPR, etc.) and/or journals - Stronghigh-level programming skills (e.g., Python), frameworks and toolssuch as DeepSpeed, Pytorch lightning, kubeflow, TensorFlow, etc. -Strong written and verbal communication skills to operate in across functional team environment #J-18808-Ljbffr

Related Jobs

View all jobs

▷ 3 Days Left! Machine Learning Engineer (UK)

▷ (3 Days Left) Senior Data Scientist - CoreProducts

▷ 3 Days Left! Head of Data Science & Applied AI NewRemote, UK

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.