▷ Apply in 3 Minutes: Machine Learning Engineer, EnterpriseResearch London, UK

Scale AI, Inc.
London
8 months ago
Applications closed

AI is becoming vitally important in every function ofour society. At Scale, our mission is to accelerate the developmentof AI applications. For 8 years, Scale has been the leading AI datafoundry, helping fuel the most exciting advancements in AI,including generative AI, defense applications, and autonomousvehicles. With our recent Series F round, we’re accelerating theusage of frontier data and models by building complex agents forenterprises around the world through our Scale Generative AIPlatform (SGP). The SGP ML team works on the front lines of this AIrevolution. We interface directly with clients to build cuttingedge products using the arsenal of proprietary research andresources developed at Scale. As an ML Engineer, you’ll work withclients to train ML models to satisfy their business needs. Yourwork will range from training next-generation AI cybersecurityfirewall LLMs to training foundation genomic models makingpredictions about life-saving drug proteins. Having a deepcuriosity about the hardest questions about LLMs will also motivatevarious research opportunities on how to apply ML to the forefrontof enterprise data. If you are excited about shaping the future ofthe modern AI movement, we would love to hear from you! You will: -Train state of the art models, developed both internally and fromthe community, in production to solve problems for our enterprisecustomers. - Work with product and research teams to identifyopportunities for ongoing and upcoming services. - Exploreapproaches that integrate human feedback and assisted evaluationinto existing product lines. - Create state of the art techniquesto integrate tool-calling into production-serving LLMs. - Workclosely with customers - some of the most sophisticated MLorganizations in the world - to quickly prototype and build newdeep learning models targeted at multi-modal content understandingproblems. Ideally you’d have: - At least 1-3 years of modeltraining, deployment and maintenance experience in a productionenvironment - Strong skills in NLP, LLMs and deep learning - Solidbackground in algorithms, data structures, and object-orientedprogramming - Experience working with a cloud technology stack (eg.AWS or GCP) and developing machine learning models in a cloudenvironment - Experience building products with LLMs includingknowing the ins and outs of evaluation, experimentation, anddesigning solutions to get the most of the models - PhD or Mastersin Computer Science or a related field Nice to haves: - Experiencein dealing with large scale AI problems, ideally in thegenerative-AI field - Demonstrated expertise in largevision-language models for diverse real-world applications, e.g.classification, detection, question-answering, etc. - Publishedresearch in areas of machine learning at major conferences(NeurIPS, ICML, EMNLP, CVPR, etc.) and/or journals - Stronghigh-level programming skills (e.g., Python), frameworks and toolssuch as DeepSpeed, Pytorch lightning, kubeflow, TensorFlow, etc. -Strong written and verbal communication skills to operate in across functional team environment #J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.