Applied Scientist (Machine Learning)

Teya
London
2 weeks ago
Create job alert

Job Description

Your Mission

You will be part of a joint team of machine learning engineers, data scientists, data analysts, and product managers building and evolving ML models, real-time systems, reports, and performing deep analysis of pricing, retention, and offer strategies.

Working with advanced predictive models, MLOps best practices, and scalable software systems, you will implement and evolve intelligent solutions to align Teya with the success of our customers.

In this role, you’ll be:

  • Helping Teya to use data to drive business decisions by implementing and continuously improving through experimentation advanced machine learning models.

  • Working on projects including but not limited to customer lifetime value, churn propensity, forecasting, risk, cost-to-serve and cost-to-acquire modelling

  • Building predictive models to a production level adopting best practices for coding, deployment, monitoring, and experimentation.


Qualifications

Your Story

  • Background in a quantitative field (Computer Science, Mathematics, Machine Learning, AI, Statistics, Economics or equivalent)

  • 5+ years of professional working experience

  • Someone who thrives in the incremental delivery of high quality production systems

  • Proficiency in Java, Python, SQL, Jupyter Notebook

  • Experience with Machine Learning and statistical inference.

  • Understanding of ETL processes and data pipelines and ability to work closely with Machine Learning Engineers for product implementation

  • Ability to communicate model objectives and performance to business stakeholders

  • Strong analytical and problem-solving skills

  • Ability to think creatively and insightfully about business problems

  • Nice to have:

    • Proficiency with Snowflake

    • Proficiency with Amazon SageMaker

    • Proficiency with Docker and Kubernetes



Additional Information

The Perks

  • We trust you, so we offer flexible working hours, as long it suits both you and your team;

  • Physical and mental health support through our partnership with GymPass giving free access to over 1,500 gyms in the UK, 1-1 therapy, meditation sessions, digital fitness and nutrition apps;

  • Our company offers extended and improved maternity and paternity leave choices, giving employees more flexibility and support;

  • Cycle-to-Work Scheme;

  • Health and Life Insurance;

  • Pension Scheme;

  • 25 days of Annual Leave (+ Bank Holidays);

  • Office snacks every day;

  • Friendly, comfortable and informal office environment in Central London.

Related Jobs

View all jobs

Senior Data Scientist (Document Search)

Senior Data Scientist (Document Search)

Machine Learning Engineering Manager | Computer Vision | Deep Learning | Python | C++ | London, Hybrid

Machine Learning Engineer, Amazon Studios AI Lab

Applied Data Scientist - 12 months Contract (15hLeft)

Principal Data Scientist - NLP

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.