Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Applied Scientist II, Amazon Music Catalog

Amazon
London
9 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist II – QuantumBlack, AI by McKinsey

Machine Learning Engineer II, Marketing Testing

Machine Learning Engineer II

Senior Data Scientist - Customer/Marketing

Data Scientist

Senior Data Scientist - Customer/Marketing

Applied Scientist II, Amazon Music Catalog

Amazon Music Catalog team is seeking an experienced Applied Scientist who will join a team of experts in the field of machine learning, and work together to break new ground in the world of understanding and classifying different forms of music, and creating interactive experiences to help users find the music they are in the mood for. We work on machine learning problems for music classification, recommender systems, dialogue systems, NLP, and music information retrieval. You'll work in a collaborative environment where you can pursue applied research, work on problems that haven’t been solved before, quickly implement and deploy your algorithmic ideas at scale, understand whether they succeed via statistically relevant experiments across millions of customers, and publish your research. You'll see the work you do directly improve the experience of Amazon Music customers on Alexa/Echo, mobile, and web.


Key job responsibilities

  1. Use machine learning, deep learning, LLMs and NLP techniques to create scalable solutions for business problems
  2. Analyze and extract relevant information from large amounts of Amazon's data to help automate and optimize key processes
  3. Design, development and evaluation of highly innovative models for predictive learning
  4. Work closely with software engineering teams to drive model implementations and new feature creations
  5. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation
  6. Research and implement novel machine learning and statistical approaches


About the team

Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. Learn more at https://www.amazon.com/music.


BASIC QUALIFICATIONS

  1. 2+ years of building models for business application experience
  2. PhD, or Master's degree and 3+ years of CS, CE, ML or related field experience
  3. Experience programming or scripting language like Python, Java, C or C++
  4. Experience building machine learning models or developing algorithms for business application
  5. Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing


PREFERRED QUALIFICATIONS

  1. Experience using Unix/Linux
  2. Experience in professional software development
  3. Experience in patents or publications at top-tier peer-reviewed conferences or journals


Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information.


Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.