Applied Scientist II, Amazon Music Catalog

Amazon
London
10 months ago
Applications closed

Related Jobs

View all jobs

Applied Scientist I (Machine Learning), ITA Automated Performance Evaluation

Applied Health Data Scientist for TRE & AI Research

AI Data Scientist: Applied Intelligence & Delivery

Senior NLP/LLM Scientist — Applied AI Lead

Machine Learning Engineer (Applied AI) (100% Remote in EMEA)

Machine Learning Engineer (Applied AI) (100% Remote in EMEA)

Applied Scientist II, Amazon Music Catalog

Amazon Music Catalog team is seeking an experienced Applied Scientist who will join a team of experts in the field of machine learning, and work together to break new ground in the world of understanding and classifying different forms of music, and creating interactive experiences to help users find the music they are in the mood for. We work on machine learning problems for music classification, recommender systems, dialogue systems, NLP, and music information retrieval. You'll work in a collaborative environment where you can pursue applied research, work on problems that haven’t been solved before, quickly implement and deploy your algorithmic ideas at scale, understand whether they succeed via statistically relevant experiments across millions of customers, and publish your research. You'll see the work you do directly improve the experience of Amazon Music customers on Alexa/Echo, mobile, and web.


Key job responsibilities

  1. Use machine learning, deep learning, LLMs and NLP techniques to create scalable solutions for business problems
  2. Analyze and extract relevant information from large amounts of Amazon's data to help automate and optimize key processes
  3. Design, development and evaluation of highly innovative models for predictive learning
  4. Work closely with software engineering teams to drive model implementations and new feature creations
  5. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation
  6. Research and implement novel machine learning and statistical approaches


About the team

Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. Learn more at https://www.amazon.com/music.


BASIC QUALIFICATIONS

  1. 2+ years of building models for business application experience
  2. PhD, or Master's degree and 3+ years of CS, CE, ML or related field experience
  3. Experience programming or scripting language like Python, Java, C or C++
  4. Experience building machine learning models or developing algorithms for business application
  5. Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing


PREFERRED QUALIFICATIONS

  1. Experience using Unix/Linux
  2. Experience in professional software development
  3. Experience in patents or publications at top-tier peer-reviewed conferences or journals


Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information.


Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.