Applied Machine Learning Researcher

Canary Wharf
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Senior Machine Learning Engineer - Research

Applied Data Scientist

Audio Machine Learning Engineer

Audio Machine Learning Engineer

Company Description

Genomics England partners with the NHS to provide whole genome sequencing diagnostics. We also equip researchers to find the causes of disease and develop new treatments – with patients and participants at the heart of it all.

Our mission is to continue refining, scaling, and evolving our ability to enable others to deliver genomic healthcare and conduct genomic research.

We are accelerating our impact and working with patients, doctors, scientists, government and industry to improve genomic testing, and help researchers access the health data and technology they need to make new medical discoveries and create more effective, targeted medicines for everybody.

Job Description

We are seeking a researcher specialising in multi-omics data analysis and ML applications to join our team. The successful candidate will contribute to research initiatives using our unique datasets (particularly those in the National Genomic Research Library, , undermines our mission and core values and diminishes the dignity, respect and integrity of all parties.  Our People policies outline our commitment to inclusivity. 

We aim to remove barriers in our recruitment processes and to be flexible with our interview processes. Should you require any adjustments that may help you to fully participate in the recruitment process, we encourage you to discuss this with us. 

Blended working model

Genomics England operates a blended working model as we know our people appreciate the flexibility that hybrid working can bring. We expect most people to come into the office a minimum of 2 times each month. However, this will vary according to role and will be agreed with your team leader. There is no expectation that people will return to the office full time unless they want to, however, some of our roles require full time on site attendance e.g., lab teams, reception team. 

Our teams and squads have, and will continue to reflect on what works best for them to work together successfully and have the freedom to design working patterns to suit, beyond the minimum. Our office locations are: Canary Wharf, Cambridge and Leeds.

Onboarding background checks

As part of our recruitment process, all successful candidates are subject to a Standard Disclosure and Barring Service (DBS) check.  We therefore require applicants to disclose any previous offences at point of application, as some unspent convictions may mean we are unable to proceed with your application due to the nature of our work in healthcare

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.