Applied AI Software Engineer

Cookpad
Bristol
11 months ago
Applications closed

Related Jobs

View all jobs

AI/ML Software Engineer III — GenAI & NLP Pipelines

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

About Cookpad
Cookpad is a food tech company dedicated to shaping the future of home cooking and food as a pillar for a sustainable future. At our Bristol headquarters we have been developing innovative product ideas and we have a new product launch in 5 countries: Japan, Indonesia, UK, France and Italy.

Moment helps people learn to cook in an innovative way with a personal coaching service. This service is completely based in AI using multimodal (text, vision, audio).

About the role
Joining Cookpad as an Applied AI Engineer you will be asked to solve interesting problems associated with turning machine learning models into a service. This will include building functionalities that need to be implemented in order to ensure fully production-ready code. 

You will communicate ideas and demos to team members and take ownership of how a feature is productionised, built and deployed.

You will be highly proficient in coding in Python and have proven hands-on experience in building applications and integrations of modern generative AI models.

It’s not for everyone. Because of our speed and growth, it can feel chaotic. We work in a small, collaborative team and in a creative, fast-paced environment. Initially our focus is small scale production. 

The role is based in Bristol on a hybrid working arrangement and we are happy to hear from applicants seeking either full-time contract or permanent employment.

Key Responsibilities:

Leverage cutting-edge AI technologies to address real-world customer challenges. Collaborate with product team to translate business and product requirements into technical solutions that leverage the latest in AI technologies. Design and implement intelligent AI agents and multi-agent systems capable of autonomous decision-making and interaction, enabling complex workflows and real-time problem-solving. Develop agent-based architectures for applications such as task orchestration, adaptive learning, and dynamic data analysis. Create and deploy Retrieval-Augmented Generation (RAG) systems to enhance AI model retrieval and contextual response accuracy. Evaluate and refine prompt engineering strategies, incorporating advanced techniques to optimize generative model outputs for diverse use cases.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.