Applied AI ML Lead - Senior Machine Learning Engineer | London, UK

JPMorgan Chase & Co.
London
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Machine Learning Engineer, Associate Director, London

Senior Data Scientist

Machine Learning Engineer, London

Research Software Engineer

Machine Learning Engineer, London

Principal MLOps Engineer - Chase UK

Applied AI ML Lead - Senior Machine Learning Engineer

Job Description

Take a technical leadership position within JPMorgan's Commercial & Investment Bank, where you'll harness cutting-edge AI techniques to revolutionize business decisions and automate processes.

As an Applied AI / ML Lead - Vice President - Machine Learning Engineer in the Applied AI ML team at JPMorgan Commercial & Investment Bank, you will be at the forefront of combining cutting-edge AI techniques with the company's unique data assets to optimize business decisions and automate processes. You will have the opportunity to advance the state-of-the-art in AI as applied to financial services, leveraging the latest research from fields of Natural Language Processing, Computer Vision, and statistical machine learning. You will be instrumental in building products that automate processes, help experts prioritize their time, and make better decisions. This role offers a unique blend of scientific research and software engineering, requiring a deep understanding of both mindsets. The role is initially that of an individual contributor, though there will be optional opportunity for management responsibility dependent on the candidate's experience.

Job Responsibilities

  • Build robust Data Science capabilities which can be scaled across multiple business use cases
  • Collaborate with software engineering team to design and deploy Machine Learning services that can be integrated with strategic systems
  • Research and analyse data sets using a variety of statistical and machine learning techniques
  • Communicate AI capabilities and results to both technical and non-technical audiences
  • Document approaches taken, techniques used and processes followed to comply with industry regulation
  • Collaborate closely with cloud and SRE teams while taking a leading role in the design and delivery of the production architectures for our solutions


Required Qualifications, Capabilities, and Skills

  • Hands-on experience in an ML engineering role
  • PhD in a quantitative discipline, e.g. Computer Science, Mathematics, Statistics
  • Track record of developing, deploying business-critical machine learning models
  • Broad knowledge of MLOps tooling - for versioning, reproducibility, observability etc.
  • Experience monitoring, maintaining, enhancing existing models over an extended time period
  • Specialism in NLP or Computer Vision
  • Solid understanding of fundamentals of statistics, optimization and ML theory. Familiarity with popular deep learning architectures (transformers, CNN, autoencoders etc.)
  • Extensive experience with pytorch, numpy, pandas
  • Knowledge of open source datasets and benchmarks in NLP / Computer Vision
  • Hands-on experience in implementing distributed/multi-threaded/scalable applications (incl. frameworks such as Ray, Horovod, DeepSpeed, etc.)
  • Able to communicate technical information and ideas at all levels; convey information clearly and create trust with stakeholders.


Preferred Qualifications, Capabilities, and Skills

  • Experience designing/ implementing pipelines using DAGs (e.g. Kubeflow, DVC, Ray)
  • Experience of big data technologies (e.g. Spark, Hadoop)
  • Have constructed batch and streaming microservices exposed as REST/gRPC endpoints
  • Familiarity with GraphQL


About Us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world's most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives.

We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants' and employees' religious practices and beliefs, as well as mental health or physical disability needs.

About the Team

The Corporate & Investment Bank is a global leader across investment banking, wholesale payments, markets and securities services. The world's most important corporations, governments and institutions entrust us with their business in more than 100 countries. We provide strategic advice, raise capital, manage risk and extend liquidity in markets around the world.#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.