Analytics Data Engineer

McCabe & Barton
London
7 months ago
Applications closed

Related Jobs

View all jobs

Remote Data Engineer — Scale Analytics & Data Platforms

Remote Data Engineer for Analytics & Data Platforms

Azure Data Engineer - ETL, Analytics & Data Quality

Senior Data Engineer: Azure Analytics & Data Solutions

Cyber Analytics Data Engineer: Modeling, ETL & Impact

Lead Data Engineer – Compute Data Platform

Analytics Data Engineer
Location:

London (Hybrid/Remote available)
Salary:

£45,000 - £70,000 based - on experience

The Opportunity
A leading Financial Services organisation is seeking exceptional Analytics Data Engineers to join their ambitious Data Transformation initiative. This is a permanent role offering competitive compensation and flexible working arrangements.
As an Analytics Data Engineer, you will be at the forefront of their data transformation, designing and delivering data products that empower business teams with self-service analytics capabilities. You'll leverage cutting-edge technologies, including Snowflake, Power BI, Python, and SQL to create scalable, intuitive data solutions that drive business value.

Key Responsibilities
Build Data Products:

Collaborate with business domains to design and develop ETL/ELT pipelines and dimensional models optimised for Power BI
Drive Governance:

Define and enforce data ownership, quality, and security standards within the Data Mesh architecture
Enable Self-Service:

Create intuitive data models and provide training to empower business users to explore data independently
Own the Data Lifecycle:

Take end-to-end responsibility for data products, from conception to deployment and continuous improvement
Champion Innovation:

Stay current with the latest trends and advocating for best practices across the organisation

The Ideal Candidate
We're looking for a curious, organised, and outcome-driven professional with a passion for data and collaboration. You should bring:
Technical Expertise:

Proven experience coding ETL/ELT pipelines with Python, SQL, or ETL tools, and proficiency in Power BI, Tableau, or Qlik
Data Modelling Skills:

Strong knowledge of dimensional modelling and database principles
Governance Experience:

Track record of working in democratized data environments, establishing controls and guardrails
Collaboration & Communication:

Ability to work effectively with senior stakeholders, present data solutions, and guide business users
Problem-Solving Mindset:

Exceptional analytical skills to tackle complex data challenges and deliver reliable, high-performance code

If you are open to exploring this role further, please respond to this advert with your latest CV for review.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.