National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Algo Capital Group | Senior Data Engineer

Algo Capital Group
London
6 months ago
Applications closed

Related Jobs

View all jobs

Graduate Recruiter - Systematic Trading Technology & Machine Learning

Senior Data Engineer - Risk Technology

London, UK


About our client:


A premier $60bn quantitative hedge fund at the forefront of machine learning and financial technology innovation is expanding their risk division. They are seeking exceptional engineers to work with their proprietary trading systems and contribute to their market-leading position in global markets.


Role Overview:


Join an elite team developing real-time applications for a sophisticated trading desk in London. You'll leverage state-of-the-art technology to implement advanced trading strategies through high-precision software solutions, processing market data to facilitate quick decision-making in one of finance's most dynamic environments.


Key Responsibilities:

  • Design and develop applications and data pipelines for real-time processing
  • Partner with the risk team to enhance existing infrastructure while maintaining engineering best practices
  • Transform risk systems through innovative real-time solutions aligned with trading objectives
  • Foster collaboration across trading, quant, and technology teams while building key stakeholder relationships
  • Drive system reliability through comprehensive monitoring, logging, and scalability initiatives


Technical Requirements:

  • Strong Python programming skills with deep SQL expertise
  • Advanced knowledge of distributed messaging systems (Kafka, Kinesis)
  • Experience with building sophisticated ETL pipelines and data lake architectures
  • Proficiency with cloud-native technologies and containerization (Kubernetes, Docker, Helm)
  • Experience with real-time stream processing frameworks and event-driven architectures
  • Background in workflow orchestration platforms and scheduling systems
  • Demonstrated technical leadership and collaborative approach


This role is an exciting opportunity to join an industry leader offering exceptional compensation, accelerated career growth, and the chance to innovate alongside the brightest minds in quantitative trading.


Apply directly or email:


Follow Algo Capital on LinkedIn for latest opportunities: linkedin.com/company/algocapitalgroup

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.