Algo Capital Group | Senior Data Engineer

Algo Capital Group
London
1 year ago
Applications closed

Senior Data Engineer - Risk Technology

London, UK


About our client:


A premier $60bn quantitative hedge fund at the forefront of machine learning and financial technology innovation is expanding their risk division. They are seeking exceptional engineers to work with their proprietary trading systems and contribute to their market-leading position in global markets.


Role Overview:


Join an elite team developing real-time applications for a sophisticated trading desk in London. You'll leverage state-of-the-art technology to implement advanced trading strategies through high-precision software solutions, processing market data to facilitate quick decision-making in one of finance's most dynamic environments.


Key Responsibilities:

  • Design and develop applications and data pipelines for real-time processing
  • Partner with the risk team to enhance existing infrastructure while maintaining engineering best practices
  • Transform risk systems through innovative real-time solutions aligned with trading objectives
  • Foster collaboration across trading, quant, and technology teams while building key stakeholder relationships
  • Drive system reliability through comprehensive monitoring, logging, and scalability initiatives


Technical Requirements:

  • Strong Python programming skills with deep SQL expertise
  • Advanced knowledge of distributed messaging systems (Kafka, Kinesis)
  • Experience with building sophisticated ETL pipelines and data lake architectures
  • Proficiency with cloud-native technologies and containerization (Kubernetes, Docker, Helm)
  • Experience with real-time stream processing frameworks and event-driven architectures
  • Background in workflow orchestration platforms and scheduling systems
  • Demonstrated technical leadership and collaborative approach


This role is an exciting opportunity to join an industry leader offering exceptional compensation, accelerated career growth, and the chance to innovate alongside the brightest minds in quantitative trading.


Apply directly or email:


Follow Algo Capital on LinkedIn for latest opportunities: linkedin.com/company/algocapitalgroup

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.