AI/ML Engineer

Austin Fraser International Ltd
London
1 year ago
Applications closed

Related Jobs

View all jobs

AI & ML Engineer - Production AI & NLP

AI/ML Software Engineer III — GenAI & NLP Pipelines

AI/ML Engineer: NLP, CV & MLOps Expert

Lead Software Engineer - Agentic AI/Machine Learning

Data Engineer - AI Practice Team

Data Engineer - AI Practice Team

AI/ML Engineer Exciting opportunity to join a leading technology firm in London as an AI/ML Engineer. If you have a strong background in AI and machine learning, particularly in generative models and large language models, we want to hear from you Location: Remote. Salary: £90,000-£110,000 Key Responsibilities: Develop, implement, and optimise AI/ML models focusing on large language models and generative AI. Collaborate with software engineers to integrate AI components into production systems. Design and maintain efficient machine learning pipelines for large-scale data processing. Deploy and manage AI/ML solutions using cloud platforms (AWS, Google Cloud). Build and maintain RESTful APIs to enable AI services for diverse applications. Engage in data preprocessing and feature engineering to ensure high-quality inputs for AI models. Conduct benchmarking and performance optimization to enhance model accuracy and efficiency. Participate in the entire software development lifecycle, including requirements gathering, design, implementation, testing, and deployment. Stay updated on the latest advancements in AI/ML and apply them to improve system capabilities. Qualifications: 3 years of experience in AI/ML engineering, with proven expertise in building large language models from scratch. Strong proficiency in Python and familiar with popular AI/ML libraries (e.g., PyTorch, TensorFlow, Scikit-learn). Experience working with transformer-based architectures and LLMs. Knowledge of vector databases and experience with embeddings for applications like product recommendations. Proven experience using cloud services (AWS, Google Cloud) for machine learning model deployment. Hands-on experience in data processing techniques for AI/ML workflows. Understanding of CI/CD pipelines, version control systems (GitHub), and containerization (Docker, Kubernetes). Excellent problem-solving skills and experience troubleshooting complex AI/ML challenges, including deep learning and neural networks. Preferred Qualifications: Prior experience with fine-tuning large language models or generative models for specific tasks. Familiarity with distributed systems and parallel processing for large-scale training. Knowledge of messaging systems (e.g., Kafka, RabbitMQ). Understanding of various activation functions, loss functions, and neural network architectures. Strong communication and collaboration skills. Education: Bachelor’s or Master’s degree in Computer Science, AI/ML, Data Science, or a related field. If this exciting opportunity looks like it could be your next role, click apply now Austin Fraser is committed to being an equal opportunities employer, and encourages applications from candidates regardless of sex, race, disability, age, sexual orientation, gender reassignment, religion or belief, marital status, or pregnancy and maternity status. Due to the volume of applications received, we are unable to provide individual feedback to unsuccessful applicants. Check us out on our website and LinkedIn for more roles. We respect your personal data and would never offer it to third parties For more information on how we handle your data, feel free to check out the Austin Fraser Privacy Notice or contact privacyaustinfraser.com Austin Fraser International Ltd is registered in England: 14971372 Austin Fraser International Ltd, 33 Soho Square, London, W1D 3QU

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.