National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

AI/ML Engineer

Austin Fraser International Ltd
London
8 months ago
Applications closed

Related Jobs

View all jobs

Senior AI | Machine Learning Engineer

Applied AI ML Lead - Senior Machine Learning Engineer - Commercial and Investment Bank

MLOps Engineer (UKIC DV Cleared)

MLOps Engineer (UKIC DV Cleared)

Computer Vision Engineer

Machine Learning Consultant

AI/ML Engineer Exciting opportunity to join a leading technology firm in London as an AI/ML Engineer. If you have a strong background in AI and machine learning, particularly in generative models and large language models, we want to hear from you Location: Remote. Salary: £90,000-£110,000 Key Responsibilities: Develop, implement, and optimise AI/ML models focusing on large language models and generative AI. Collaborate with software engineers to integrate AI components into production systems. Design and maintain efficient machine learning pipelines for large-scale data processing. Deploy and manage AI/ML solutions using cloud platforms (AWS, Google Cloud). Build and maintain RESTful APIs to enable AI services for diverse applications. Engage in data preprocessing and feature engineering to ensure high-quality inputs for AI models. Conduct benchmarking and performance optimization to enhance model accuracy and efficiency. Participate in the entire software development lifecycle, including requirements gathering, design, implementation, testing, and deployment. Stay updated on the latest advancements in AI/ML and apply them to improve system capabilities. Qualifications: 3 years of experience in AI/ML engineering, with proven expertise in building large language models from scratch. Strong proficiency in Python and familiar with popular AI/ML libraries (e.g., PyTorch, TensorFlow, Scikit-learn). Experience working with transformer-based architectures and LLMs. Knowledge of vector databases and experience with embeddings for applications like product recommendations. Proven experience using cloud services (AWS, Google Cloud) for machine learning model deployment. Hands-on experience in data processing techniques for AI/ML workflows. Understanding of CI/CD pipelines, version control systems (GitHub), and containerization (Docker, Kubernetes). Excellent problem-solving skills and experience troubleshooting complex AI/ML challenges, including deep learning and neural networks. Preferred Qualifications: Prior experience with fine-tuning large language models or generative models for specific tasks. Familiarity with distributed systems and parallel processing for large-scale training. Knowledge of messaging systems (e.g., Kafka, RabbitMQ). Understanding of various activation functions, loss functions, and neural network architectures. Strong communication and collaboration skills. Education: Bachelor’s or Master’s degree in Computer Science, AI/ML, Data Science, or a related field. If this exciting opportunity looks like it could be your next role, click apply now Austin Fraser is committed to being an equal opportunities employer, and encourages applications from candidates regardless of sex, race, disability, age, sexual orientation, gender reassignment, religion or belief, marital status, or pregnancy and maternity status. Due to the volume of applications received, we are unable to provide individual feedback to unsuccessful applicants. Check us out on our website and LinkedIn for more roles. We respect your personal data and would never offer it to third parties For more information on how we handle your data, feel free to check out the Austin Fraser Privacy Notice or contact privacyaustinfraser.com Austin Fraser International Ltd is registered in England: 14971372 Austin Fraser International Ltd, 33 Soho Square, London, W1D 3QU

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.

Top 10 Mistakes Candidates Make When Applying for Machine-Learning Jobs—And How to Avoid Them

Landing a machine-learning job in the UK is competitive. Learn the 10 biggest mistakes applicants make—plus tested fixes, expert resources and live links that will help you secure your next ML role. Introduction From fintechs in London’s Square Mile to advanced-research hubs in Cambridge, demand for machine-learning talent is exploding. Job boards such as MachineLearningJobs.co.uk list new vacancies daily, and LinkedIn shows more than 10,000 open ML roles across the UK right now. Yet hiring managers still reject most CVs long before interview—often for avoidable errors. Below are the ten most common mistakes we see, each paired with a practical fix and a live resource link so you can dive deeper.