AI Tech Lead – Agentic AI, LangGraph, ML, Python, CI/CD, LLM’s, Early-Stage Startup, UK Remote

WMtech
Bristol
9 months ago
Applications closed

Related Jobs

View all jobs

AI & Data Science Manager / Senior Manager

Machine Learning Engineer

Machine Learning Engineer - Tech Lead

Senior Full Stack Data Engineer (Client Facing)

Senior Full Stack Data Engineer (Client Facing)

Lead Data Scientist — AI for Workday Systems

AI Tech Lead – Agentic AI, LangGraph, ML, Python, CI/CD, LLM’s, Early-Stage Startup, UK Remote


About the Role


A mission-driven, early-stage startup is looking for anAI Tech Leadto join its growing team. This is a hands-on leadership role where you’ll help shape a cutting-edge AI platform designed to drive real-world behaviour change and improve human performance and wellbeing.


Backed by strong funding, this product-focused team of senior engineers operates in a low-ego, high-collaboration culture. The platform's first focus is on employee wellbeing in high-stress industries—and the mission is just getting started.


You’ll lead a cross-functional team of backend and machine learning engineers, guiding architecture, mentoring team members, and staying close to the code. This is a rare opportunity to build both product and team in a fast-moving environment with purpose at its core.


What You’ll Do

  • Lead and mentor a senior engineering team working across backend, ML, and infrastructure.
  • Play key role in design, development, and deployment AI applications using LLM's, Agentic framework, and other related technologies
  • Own technical direction for core systems, focusing on scalability, performance, and reliability.
  • Write clean, maintainable code and contribute actively to the codebase.
  • Define and uphold engineering best practices (code quality, CI/CD, observability, etc.).
  • Collaborate closely with the CTO and product team to align technical delivery with strategic goals.
  • Continuously improve team operations, development workflows, and developer experience.
  • Play a key role in hiring and onboarding as the team grows.


What We’re Looking For

  • 7+ years of commercial software engineering experience with a strong backend focus.
  • Proven ability to lead engineering projects and/or teams.
  • Experience with LangGraph, and a good understanding of agentic patterns (e.g. self-reflection, prompt/response-optimisation, multi-modal guardrails, cross-reflection, role-based cooperation)
  • Hands-on experience in launching GenAI products, including agentic systems and multi-agent frameworks, driving real-world AI applications from concept to deployment.
  • Experience in fast-paced or startup environments.
  • BSc in Computer Science, Data Science, or related technical discipline.
  • Strong communication skills and a bias toward action.


Technologies You’ll Work With

Experience in some or most of the following:


  • Languages/Frameworks:Python, FastAPI, Pydantic, Streamlit (for internal tools)
  • AI:AgenticFlows, GenAI, LLMs, and multimodal systems
  • Architecture:Microservices, RESTful APIs, async programming
  • Infrastructure:Docker, Terraform, GitHub Actions, GCP (preferred)
  • Datastores:MongoDB, Redis
  • Monitoring/Tooling:Prometheus, Grafana, Sentry


The role is remote with occasional travel


Ready to lead and build with purpose?

If you're excited by the idea of applying your engineering skills to something meaningful, please send your CV to


WMtech

WMtech is trusted by leaders in the Cyber Security, AI and Enterprise Software sectors to advise on talent strategy specifically for Start-Ups. Our clients are heavily VC backed, unicorn status, pre-IPO start-ups with pioneering technology.


WMTech is an equal opportunity employer and does not discriminate in employment on the basis of race, color, religion, sex (including pregnancy and gender identity), national origin, political affiliation, sexual orientation, marital status, disability, genetic information, age, membership in an employee organization, retaliation, parental status, military service, or other non-merit factor

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.