Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

AI Solutions Architect (R122902 AI Solutions Architect)

ZipRecruiter
London
7 months ago
Applications closed

Related Jobs

View all jobs

Deep Learning Solutions Architect – Inference Optimization

Deep Learning Solutions Architect – Inference Optimization

Deep Learning Solutions Architect – Inference Optimization

Solution Architect – AI & Machine Learning

Data Scientist

Senior Deep Learning Architect, Generative AI Innovation Center

Job Description

Job Description:

As anAI Solutions Architectat Mars Global Services, you will lead the design, integration, and deployment of AI-powered solutions to enhance the Associate experience, with a strong focus on Generative AI (GenAI) and Conversational AI. In this key role, you will drive AI transformation initiatives within a globally recognized brand, influencing enterprise-wide adoption of AI solutions. Your work will be pivotal in ensuring the successful implementation of scalable and secure AI solutions across Mars' enterprise platforms, while driving AI adoption across the organization.

What are we looking for?

  • Bachelor's degree in Computer Science, Artificial Intelligence, Data Science, or a related field (or equivalent industry experience).
  • 7+ years of experience in AI/ML solution development, architecture, and enterprise integration.
  • Expertise in LLMs, NLP/NLU, Conversational/GenAI, AI Search, and Virtual Agents.
  • Proficiency in programming & AI development (Python, OpenAI APIs, MLOps frameworks).
  • Nice-to-Haves:
    • Experience with multilingual AI models for global translation.
    • AI certifications (e.g., Azure AI Engineer, Google ML Engineer, TOGAF).

What would be your key responsibilities?

  • Design and implement enterprise-scale AI solutions, focusing on Conversational AI, Generative AI, and AI-powered automation to enhance business operations.
  • Define and maintain the technical product roadmap, ensuring scalability, security, compliance, and alignment with business goals.
  • Develop and deploy custom AI models (NLU, NLG, AI Search, Virtual Agents) and integrate with SaaS platforms (e.g., ServiceNow, Workday, OpenAI) to improve user experience.
  • Establish AI governance frameworks to align with Responsible AI practices and ensure compliance with data privacy laws (e.g., GDPR, CCPA).
  • Drive adoption of GenAI-powered tools for self-service automation, analytics, and search capabilities, while providing leadership and mentorship to AI and engineering teams.
  • Identify and mitigate AI risks (e.g., model drift, data bias) and continuously refine AI models and solutions through performance monitoring and feedback loops.
  • Expertise in AI/ML algorithms, enterprise-scale applications, and SaaS AI platforms (e.g., ServiceNow Now Assist, Workday Illuminate, SAP, Microsoft CoPilot, OpenAI, Mistral), with experience integrating AI solutions with enterprise systems (Microsoft, Workday, SAP) to enable connected experiences across search and conversational AI.

What can you expect from Mars?

  • Work with over 130,000 diverse and talented Associates, all guided by the Five Principles.
  • Join a purpose driven company, where we’re striving to build the world we want tomorrow, today.
  • Best-in-class learning and development support from day one, including access to our in-house Mars University.
  • An industry competitive salary and benefits package, including company bonus.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.