AI Solutions Architect (R122902 AI Solutions Architect)

ZipRecruiter
London
10 months ago
Applications closed

Related Jobs

View all jobs

AI/ Machine Learning Engineer NLP / LLM - Contract

Senior Data Scientist SME & AI Architect

Senior AI Data Scientist — Scale GenAI & LLM Solutions

Senior Lead Data Scientist – Healthcare AI

AI & Data Science Manager / Senior Manager

AI & Data Science Manager / Senior Manager

Job Description

Job Description:

As anAI Solutions Architectat Mars Global Services, you will lead the design, integration, and deployment of AI-powered solutions to enhance the Associate experience, with a strong focus on Generative AI (GenAI) and Conversational AI. In this key role, you will drive AI transformation initiatives within a globally recognized brand, influencing enterprise-wide adoption of AI solutions. Your work will be pivotal in ensuring the successful implementation of scalable and secure AI solutions across Mars' enterprise platforms, while driving AI adoption across the organization.

What are we looking for?

  • Bachelor's degree in Computer Science, Artificial Intelligence, Data Science, or a related field (or equivalent industry experience).
  • 7+ years of experience in AI/ML solution development, architecture, and enterprise integration.
  • Expertise in LLMs, NLP/NLU, Conversational/GenAI, AI Search, and Virtual Agents.
  • Proficiency in programming & AI development (Python, OpenAI APIs, MLOps frameworks).
  • Nice-to-Haves:
    • Experience with multilingual AI models for global translation.
    • AI certifications (e.g., Azure AI Engineer, Google ML Engineer, TOGAF).

What would be your key responsibilities?

  • Design and implement enterprise-scale AI solutions, focusing on Conversational AI, Generative AI, and AI-powered automation to enhance business operations.
  • Define and maintain the technical product roadmap, ensuring scalability, security, compliance, and alignment with business goals.
  • Develop and deploy custom AI models (NLU, NLG, AI Search, Virtual Agents) and integrate with SaaS platforms (e.g., ServiceNow, Workday, OpenAI) to improve user experience.
  • Establish AI governance frameworks to align with Responsible AI practices and ensure compliance with data privacy laws (e.g., GDPR, CCPA).
  • Drive adoption of GenAI-powered tools for self-service automation, analytics, and search capabilities, while providing leadership and mentorship to AI and engineering teams.
  • Identify and mitigate AI risks (e.g., model drift, data bias) and continuously refine AI models and solutions through performance monitoring and feedback loops.
  • Expertise in AI/ML algorithms, enterprise-scale applications, and SaaS AI platforms (e.g., ServiceNow Now Assist, Workday Illuminate, SAP, Microsoft CoPilot, OpenAI, Mistral), with experience integrating AI solutions with enterprise systems (Microsoft, Workday, SAP) to enable connected experiences across search and conversational AI.

What can you expect from Mars?

  • Work with over 130,000 diverse and talented Associates, all guided by the Five Principles.
  • Join a purpose driven company, where we’re striving to build the world we want tomorrow, today.
  • Best-in-class learning and development support from day one, including access to our in-house Mars University.
  • An industry competitive salary and benefits package, including company bonus.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.