Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

AI Software Engineer

Heddon on the Wall
7 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning/ AI Engineer – Agentic Systems

Staff Machine Learning Engineer - Autonomy

Machine Learning Engineer

Machine Learning Engineer

Staff Machine Learning Performance Engineer, Inference Optimisation

Machine Learning Engineer

AI Software Engineer - Newcastle - Up to £60,000 + Bonus
Cutting-Edge AI & Computer Vision Software

KO2's client, an innovative and fast-growing technology company based in the Newcastle area, is looking to recruit an AI Software Engineer to develop next-generation computer vision systems for real-time applications. This is an exciting opportunity to join a highly skilled engineering team working on impactful AI solutions deployed in real-world environments.

Key Responsibilities:

Develop and implement advanced AI and machine learning models for computer vision applications.
Build and optimise real-time video processing pipelines using tools such as GStreamer and FFmpeg.
Train, validate, and refine AI models using best practices, with a focus on precision, recall, and other key performance metrics.
Write efficient, production-level code in Python and C++.
Evaluate and integrate state-of-the-art AI techniques to address complex computer vision challenges.Essential Requirements:

Bachelor's or Master's degree in Computer Science, Data Science, or a related technical discipline.
5+ years of hands-on experience working on computer vision problems and AI system development.
Strong programming skills in Python and C++.
Experience with real-time video pipelines, particularly GStreamer and FFmpeg.
Solid understanding of AI model training concepts (e.g., epochs, hyperparameters, training/validation datasets).
Demonstrated ability to apply the right computer vision techniques and critically evaluate their advantages.Desirable Skills:

Experience deploying AI software in edge computing environments, especially on Nvidia Jetson hardware.
Background in sectors such as automotive computer vision or other real-time, high-reliability fields.
Ability to design appropriate AI models based on a given problem statement and source data.What's on Offer:

A competitive salary up to £60,000 depending on experience.
A chance to work on cutting-edge AI projects with real-world applications.
Flexible and collaborative working environment, with hybrid or on-site options available.If you're ready to take the next step in your AI engineering career and want to work with a forward-thinking team delivering real innovation, apply today to KO2's client in Newcastle

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.