National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

AI) Machine Learning Research Engineer

London
2 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Researcher

Machine Learning Research Engineer

ML/AI Software Engineer

Computer Vision Engineer

Senior AI | Machine Learning Engineer

AI Research Engineer, PhD

Job Title: AI Machine Learning Research Engineer

Duration: 6 Months

Location: Remote - With Branch/clients visit when required, London / Windsor

Rate: £850 - £900 inside umbrella

About the Role:

Join our client's Innovation Team as an AI Machine Learning Research Engineer, where you will play a pivotal role in turning visionary ideas into reality. This position is integral to the technical execution of innovative projects in the energy sector, leveraging your expertise in AI, full-stack development, and cloud architecture. If you are passionate about pioneering technologies and enjoy bridging the gap between theoretical concepts and practical applications, this role is for you.

Key Responsibilities:

POC Development & Prototyping: Create robust prototypes and proof of concepts (POCs) that showcase the value of new ideas, integrating AI with front-end and back-end systems to align with sustainable energy solutions.
AI & Machine Learning Implementation: Design and deploy AI/ML models to extract insights from energy data, optimise systems, and enhance customer experiences.
Full-Stack Development: Develop end-to-end solutions, ensuring seamless integration between components and optimal performance across the technology stack.
Technical Innovation: Utilise advanced technologies, including large language models and predictive analytics, to tackle complex challenges in the energy industry.
Cross-Functional Collaboration: Work alongside Innovation Designers to align technical development with design concepts and business objectives, translating AI capabilities into user-friendly experiences.
Agile Methodology: Apply agile practises to produce high-quality code rapidly and facilitate iterative feedback for continuous improvement.
Cloud and DevOps Implementation: Manage applications in cloud environments (AWS/Azure) and implement CI/CD pipelines to streamline development and deployment.
Design Skills Application: Contribute to user interface and experience design, focusing on AI interactions and data visualisations to create intuitive products.
Knowledge Sharing: Act as a mentor within the Innovation Team, sharing insights on emerging AI technologies and fostering a culture of learning and growth.
Stakeholder Interaction: Collaborate with stakeholders to refine requirements, gather feedback, and validate the technical aspects of innovations, clearly communicating the capabilities of AI solutions.

Required Skills and Experience:

Innovation Background: Experience in an innovation or product team, ideally with exposure to both large organisations and startups.
POC Development: Proven track record of transforming complex ideas into workable prototypes and POCs.
Technical Proficiency: Strong programming skills in various languages and frameworks relevant to project needs.
Emerging Technology Experience: Hands-on experience with advanced technologies such as AI, LLMs, and SLMs.
Cloud and DevOps Understanding: Basic knowledge of cloud services and DevOps principles to support efficient development and deployment processes.
Design Capability: Skills in designing user-friendly interfaces that enhance the user experience of prototypes.
Agile Expertise: Proficiency in agile methodologies, with experience in fast-paced, iterative environments.

Adecco is a disability-confident employer. It is important to us that we run an inclusive and accessible recruitment process to support candidates of all backgrounds and all abilities to apply. Adecco is committed to building a supportive environment for you to explore the next steps in your career. If you require reasonable adjustments at any stage, please let us know and we will be happy to support you

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.