Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

AI Governance Lead

Sky
Bethnal Green
10 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Global Head of Data Science

Global Head of Data Science

Tech Lead – AI/ML, GenAI, Data Engineering

Data Scientist (Machine Learning Observability & Governance)

Data Scientist (Machine Learning Observability & Governance)

We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do Champion of Responsible AI & Data Ethics : Lead initiatives to establish and promote a culture of ethical & responsible AI use across the organisation . Develop strategies to embed ethical considerations in AI applications from design to deployment . Design and Governance of AI Ethics Framework: Create and implement a robust framework that guides AI systems' ethical development, deployment, and continuous monitoring . Ensure AI practices comply with international standards and reflect the organisation's commitment to ethical operations. AI Model Ethics Review and Audit: Establish protocols for regular ethics reviews and audits of AI models to ensure compliance with ethical standards throughout their lifecycle. Legal Liaison and Compliance Assurance: Direct collaboration with legal departments to align with the letter and spirit of the law surrounding data use, storage, and movement. This includes designing and implementing solutions that ensure compliance visibility. Training and Capacity Building: Develop and deliver training programs focused on Responsible AI principles to raise awareness and embed these practices across the organisation . Facilitate workshops and seminars to ensure ongoing learning and engagement with AI ethics. Stakeholder Engagement and Policy Advocacy: Actively engage with industry groups, regulatory bodies, and technology partners to advocate for ethical AI practices. Represent the organisation in external forums to share insights and learn from global best practices. Responsible AI Impact Assessments: Implement impact assessments for all AI projects to evaluate their ethical, social, and legal implications. Integrate these assessments into the project development process to ensure responsible implementation. Innovation in Ethical AI Practices: Sponsor research and innovation projects focused on enhancing ethical AI practices. Collaborate with academic institutions and research centres to explore new methodologies for fairness, accountability, and transparency in AI. What you'll bring 7 years of experience in Responsible AI, Data Ethics, strategy development, and execution with an u nderstanding of ethical considerations in AI and data practices. Expertise in AI Ethics and Governance: Demonstrable knowledge of the ethical issues associated with AI, such as bias, fairness, and transparency, with experience in developing or managing AI systems. Strategic Leadership and Policy Development: Proven ability to lead organizational strategy around Responsible AI, influence internal policies, and contribute to industry-wide standards. Advanced Technical Skills: Strong technical background to understand and critique complex AI and machine learning technologies, ensuring they align with ethical guidelines. Effective Communication and Advocacy: Excellent communication skills can articulate complex AI and ethical concepts to diverse audiences, from technical teams to executive boards. Collaborative and Influential Leadership: Skilled in working within matrix organisations and leading cross-functional teams. Ability to influence culture and implement change across traditional and non-traditional reporting lines. Project Management and Implementation: Strong project management skills, with experience leading large-scale projects that combine practical and cultural elements to embed Responsible AI practices in business operations. Relationship Management: Exceptional ability to manage relationships across all levels of the organisation and with external stakeholders, ensuring effective collaboration and discretion on sensitive matters. Group Data Hub Want to unlock the power of data? Our Group Data Hub works with millions of data transformations every day to deliver value, improve customer experience and enable new product launches. From architecture to analytics and engineering to science: it's how we bring customers more of what they love. The rewards There's one thing people can't stop talking about when it comes to LifeAtSky : the perks . Here's a taster: Sky Q, for the TV you love all in one place

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.