Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

AI Governance Lead

Sky
Barnsbury
11 months ago
Applications closed

Related Jobs

View all jobs

AI / ML / Data Science Strategy & Delivery Lead (SM/D)

AI / ML / Data Science Strategy & Delivery Lead (SM/D)

Machine Learning Engineer – AI Team (Global Digital)

Machine Learning Engineer - AI Team (Global Digital)

Principal Data Scientist

Executive Director / Principal Data Scientist

We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do Champion of Responsible AI & Data Ethics : Lead initiatives to establish and promote a culture of ethical & responsible AI use across the organisation . Develop strategies to embed ethical considerations in AI applications from design to deployment . Design and Governance of AI Ethics Framework: Create and implement a robust framework that guides AI systems' ethical development, deployment, and continuous monitoring . Ensure AI practices comply with international standards and reflect the organisation's commitment to ethical operations. AI Model Ethics Review and Audit: Establish protocols for regular ethics reviews and audits of AI models to ensure compliance with ethical standards throughout their lifecycle. Legal Liaison and Compliance Assurance: Direct collaboration with legal departments to align with the letter and spirit of the law surrounding data use, storage, and movement. This includes designing and implementing solutions that ensure compliance visibility. Training and Capacity Building: Develop and deliver training programs focused on Responsible AI principles to raise awareness and embed these practices across the organisation . Facilitate workshops and seminars to ensure ongoing learning and engagement with AI ethics. Stakeholder Engagement and Policy Advocacy: Actively engage with industry groups, regulatory bodies, and technology partners to advocate for ethical AI practices. Represent the organisation in external forums to share insights and learn from global best practices. Responsible AI Impact Assessments: Implement impact assessments for all AI projects to evaluate their ethical, social, and legal implications. Integrate these assessments into the project development process to ensure responsible implementation. Innovation in Ethical AI Practices: Sponsor research and innovation projects focused on enhancing ethical AI practices. Collaborate with academic institutions and research centres to explore new methodologies for fairness, accountability, and transparency in AI. What you'll bring 7 years of experience in Responsible AI, Data Ethics, strategy development, and execution with an u nderstanding of ethical considerations in AI and data practices. Expertise in AI Ethics and Governance: Demonstrable knowledge of the ethical issues associated with AI, such as bias, fairness, and transparency, with experience in developing or managing AI systems. Strategic Leadership and Policy Development: Proven ability to lead organizational strategy around Responsible AI, influence internal policies, and contribute to industry-wide standards. Advanced Technical Skills: Strong technical background to understand and critique complex AI and machine learning technologies, ensuring they align with ethical guidelines. Effective Communication and Advocacy: Excellent communication skills can articulate complex AI and ethical concepts to diverse audiences, from technical teams to executive boards. Collaborative and Influential Leadership: Skilled in working within matrix organisations and leading cross-functional teams. Ability to influence culture and implement change across traditional and non-traditional reporting lines. Project Management and Implementation: Strong project management skills, with experience leading large-scale projects that combine practical and cultural elements to embed Responsible AI practices in business operations. Relationship Management: Exceptional ability to manage relationships across all levels of the organisation and with external stakeholders, ensuring effective collaboration and discretion on sensitive matters. Group Data Hub Want to unlock the power of data? Our Group Data Hub works with millions of data transformations every day to deliver value, improve customer experience and enable new product launches. From architecture to analytics and engineering to science: it's how we bring customers more of what they love. The rewards There's one thing people can't stop talking about when it comes to LifeAtSky : the perks . Here's a taster: Sky Q, for the TV you love all in one place

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.