Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

AI Consultant

Equifax, Inc.
London
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer & AI Consultant – UKI

Senior Data Science Consultant, AWS Professional Services

Senior Data Science Consultant, AWS Professional Services

Senior Data Science Consultant, AWS Professional Services

Senior Data Science Consultant, AWS Professional Services

Senior Data Science Consultant — AI and Analytics (Remote)

OurAI Consultantroles are unique. The ideal candidate is a rare hybrid, a scientist with strong technical skills in AI and machine learning, the programming abilities to scrape, combine, and manage data from a variety of sources and a statistician who knows how to derive insights from the information within. They will combine the skills to create new prototypes with the creativity and thoroughness to ask and answer the deepest questions about the data, what secrets it holds, and to push the boundaries of what is possible with big data. Want to know more?

What You’ll Do:

  1. Conduct in-depth analysis of data available to Equifax and its partners.

  2. Collaborate with product managers to conduct market research and validate product needs.

  3. Develop and test AI models and algorithms, utilizing platforms like Vertex AI and BQML.

  4. Contribute to the creation of business cases for proposed AI solutions.

  5. Evaluate the feasibility and potential impact of AI projects.

  6. Provide technical guidance and support to junior analysts.

  7. Be proficient in Python, stay up-to-date on the latest advancements in AI and machine learning.

  8. Utilize combined knowledge of data structures, analytics, algorithms/models, and strong computer science fundamentals to independently prepare datasets, conduct analytics, and develop deployable solutions.

  9. Collect, analyze and interpret large data assets to define and build multiple innovative solution components leveraging business and technical expertise. Support the analytical strategy by understanding critical technical capabilities and suggesting opportunities.

  10. Lead the development of projects with multiple deliverables, leveraging business and technical expertise.

  11. Work on high-complexity tasks in problems often within multiple business or analytical domains, collaborating with other teams to develop predictive models, risk assessments, fraud detection, recommendation engines, etc., encouraging enhanced solutions.

  12. Package, summarize, visualize, and perform storytelling on analytical findings and results for management and business users.

  13. Communicate results to external stakeholders and mid-level leadership, able to communicate the business impact of work.

  14. Evaluate the technical work of peers and junior data scientists, guiding them on deliverable quality and accuracy.


What experience you need:

  1. Bachelor's degree (2:1 or above) in a numerical subject (Computer Science, Mathematics, Statistics, Physics, Engineering).

  2. Solid experience in data analysis, machine learning, and AI development.

  3. Hands-on experience with cloud-based AI platforms and tools.

  4. Proficiency in programming languages such as Python and SQL.

  5. Strong analytical and problem-solving skills.

  6. Ability to work independently and as part of a team.

  7. Good communication, presentation, and visualization skills.

  8. Strong experience in a related analytical role.

  9. Proven track record of designing and developing predictive models in real-world applications.

  10. Experience with model performance evaluation and predictive model optimization for accuracy and efficiency.

  11. Cloud certification strongly preferred.

  12. Additional role-based certifications may be required depending upon region/BU requirements.


What could set you apart:

  1. Experience with specific AI techniques, such as neural networks or natural language processing.

  2. Knowledge of the financial services industry.

  3. Contributions to open-source AI projects.

  4. Experience with data visualization tools.

  5. Passion for data science, data mining, machine learning, and experience with big data architectures and methods.

  6. A Master's degree in a quantitative field (Statistics, Mathematics, Economics).

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.