AI Applied Engineer

Dystematic Limited
London
11 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Senior Machine Learning Engineer - Research

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Scientist

Data Scientist

We are expanding our capabilities in AI and are now looking to hire an Applied AI Engineer.

If you have a passion for Generative models and are excited about implementing the latest advancements in AI, come and join us! You’ll be working with a team of experienced developers, data scientists, and product managers to shape the future of AI applications. We offer a competitive salary and an environment that encourages continuous learning and innovation.

Key Responsibilities

  • Implement agents and tools based on generative models
  • Collaborate with cross-functional teams to integrate AI models into products and solutions
  • Fine-tune machine learning and generative models for specific applications
  • Stay up-to-date with current AI research and adapt new methodologies for practical applications

Requirements

  • MSc Degree in either Data Science, AI, ML or Computer Science
  • 3-5 years experience in applied AI
  • Deep understanding of ML algorithms, DL architectures, RL
  • Insight into generative models, transformer architecture, and training of LLMs
  • Proficiency in Python, familiarity with TensorFlow, PyTorch, Hugging Face transformers and LangChain
  • Effective communication, especially in explaining AI concepts to non-technical stakeholders

Next Steps

Interested in the vacancy? We encourage a diverse workforce and welcome applications from all communities.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.