Ads Data Engineer - HTS Media Services

Hopper
Boston
4 days ago
Create job alert
About HTS Media

HTS Media is Hopper’s advertising and media division, built to help travel brands, destinations, and suppliers connect with travelers at scale. We power advertising placements across Hopper’s app and through our B2B partner network, which includes global brands like Capital One Travel and TripAdvisor. Our mission is to build the travel industry’s leading retail media network, turning advertising into a major driver of profitability for Hopper and our partners, much like Instacart, Uber, and Amazon have done in their sectors.


We’re still in the early stages of our roadmap, yet HTS Media has already become one of Hopper’s fastest-growing and most profitable business units. The engineering team plays a pivotal role in scaling the platform, ensuring our ad tech products deliver measurable impact for advertisers and seamless experiences for travelers.


About the Role

As the foundational Data Engineer for HTS Media, you will own the data infrastructure that powers our entire advertising business. Our platform generates a massive volume of data, from ad impressions and clicks to audience segments and conversion events, that is critical to our advertisers, partners, and internal teams. Your mission is to build a robust, scalable data foundation from the ground up that transforms this raw data into the trusted, high-quality datasets that power our advertiser-facing reporting and enable our future ML models.


You will be responsible for the full lifecycle of data, from building real-time data pipelines to modeling data in our warehouse for analytics and reporting. You will partner closely with backend, full-stack, and product teams to power fast, accurate, and reliable reporting that will build advertiser trust. You will lay the groundwork for our ML optimization engine, which will drive ad‑serving predictions (like CTR and conversion rates) to make our platform smarter and more performant—mirroring the successful data‑driven ad platforms at companies like Amazon and Instacart. Your work will be the foundation of our platform's intelligence and a key factor in our ability to deliver measurable results.


Responsibilities

  • Own the Data Architecture: Design, build, and maintain scalable and reliable ETL/ELT pipelines to process high-volume advertising data.


  • Build the Foundation: Develop and manage our analytical data warehouse, establishing it as the single source of truth for all reporting and analytics.


  • Enable Insights: Create clean, reliable, and performant data models that power our advertiser reporting dashboards, internal analytics, and billing systems.


  • Ensure Data Integrity: Implement robust data quality checks, monitoring, and alerting to ensure the accuracy and trustworthiness of our data.


  • Collaborate and Empower: Work closely with the engineering and product teams to define data requirements and deliver the necessary data infrastructure to support new ad products and features.


  • Prepare for the Future: Build the foundational data systems that will enable future ML‑driven optimizations for audience targeting and performance prediction.



Experience

  • 4+ years of data engineering experience, with a demonstrated track record of building and maintaining data infrastructure at scale.


  • Expert‑level proficiency in SQL and a programming language like Python or Scala for data processing.


  • Hands‑on experience with cloud‑based data warehousing solutions (e.g., BigQuery, Snowflake, Redshift).


  • Proven success building and operationalizing data pipelines using orchestration tools (e.g., SQLMesh, Airflow, dbt).


  • Experience with real‑time data streaming technologies (e.g., Google Pub/Sub, Kafka, Kinesis).


  • Strong understanding of data modeling concepts and experience designing schemas for analytical workloads.


  • Experience with ad tech, retail media, or large‑scale data systems is strongly preferred.


  • Excellent communication skills and an ability to collaborate effectively with both technical and business stakeholders.


  • A strong sense of ownership and the ability to operate with a high degree of autonomy in a fast‑paced, entrepreneurial culture.



Perks and benefits of working with us:

  • Well‑funded and proven startup with large ambitions, competitive salary and the upsides of pre‑IPO equity packages.


  • Unlimited PTO.


  • Carrot Cash travel stipend.


  • Access to co‑working space on demand through FlexDesk AND Work‑from‑home stipend.


  • Please ask us about our very generous parental leave, much above industry standards!.


  • Entrepreneurial culture where pushing limits and taking risks is everyday business.


  • Open communication with management and company leadership.


  • Small, dynamic teams = massive impact. 100% employer paid Medical, Dental and Vision coverage for employees.


  • Access to Disability & Life insurance.


  • Health Reimbursement Account (HRA).


  • DCA/ FSA and access to 401k plan.



More about Hopper

At Hopper, we are on a mission to become the leading travel platform globally – powering Hopper’s mobile app, website and our B2B business, HTS (Hopper Technology Solutions). By leveraging massive amounts of data and advanced machine learning algorithms, Hopper combines its world‑class travel agency offering with proprietary fintech products to bring transparency, flexibility and savings to travelers globally. We have developed several unique fintech solutions that address everything from pricing volatility to trip disruptions – helping people travel better and save more on their trips.


The Hopper platform serves hundreds of millions of travelers globally and continues to capture market share around the world. The Hopper app has been downloaded over 120 million times and has become largely popular among younger travelers – with 70% of its users being Gen Z and millennials.


While everyone knows us as the Gen Z and Millennial travel app, Hopper has evolved to become much more than that. In recent years, we’ve grown into a travel fintech provider, commerce platform, and global travel agency that powers some of the world’s largest brands.


Through HTS, our B2B division, the company supercharges its partners’ direct channels by integrating our fintech products on their sites or powering end‑to‑end travel portals. Today, our partners include leading travel brands like Capital One, Nubank, Air Canada, and many more.


Here are just a few stats that demonstrate the company’s recent growth:



  • Billions of dollars worth of travel and travel fintech are sold through Hopper and HTS’ channels every year.


  • Our fintech products – including Cancel for Any Reason and Flight Disruption Assistance – have exceptionally strong CSAT because the terms are always clear, and customers receive instant, no‑questions‑asked resolutions.


  • Almost 30% of our app customers purchase at least one fintech product when making a booking; and consumers are 1.6x more likely to repurchase if they add fintech to their booking vs if they booked just travel.



Given the success of its fintech products, Hopper launched a B2B initiative, HTS (Hopper Technology Solutions), which represents more than 75% of the business.


Through HTS, any travel provider (airlines, hotels, banks, travel agencies, etc.) can integrate and seamlessly distribute Hopper’s fintech or travel inventory on their direct channels. As its first HTS partnership, the company partnered with Capital One to co‑develop Capital One Travel, a new travel portal designed specifically for cardholders. Other HTS partners include Air Canada, Uber, CommBank, Nubank, Flair Airlines and many more.


Hopper has been named the #1 most innovative company in travel by Fast Company. Hopper has been downloaded over 120 million times and continues to have millions of new installs each month. Hopper is now the #3 largest online travel agencies in North America and 70% of our app customers are Gen-Z and millennials travelers.


Hopper has raised over $750 million USD of private capital and is backed by some of the largest institutional investors and banks in the world. HTS is primed to continue its growth as the leading travel ecommerce provider in a $1 trillion online shopping category. The Hopper app and website will also continue to be the preferred travel provider for Gen Z and Millennials..


Come take off with us!


#J-18808-Ljbffr

Related Jobs

View all jobs

Ads Data Engineer – Scale Data Platform & ML Readiness

Software/Data Engineer

CDI - Data Engineer (Data Science)

Lead Data Engineer

Staff Data Engineer

Lead Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.