Accelerant | Data Engineer

Accelerant
Manchester
3 months ago
Applications closed

Related Jobs

View all jobs

Only 24h Left! Machine Learning Engineer, JP Science andData

Product Manager

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Junior Data Scientist

About Accelerant:

Accelerant is a data-driven, technology-powered insurance platform that empowers underwriters to better serve their insureds. Their advanced data intelligence tools are revolutionizing how underwriters share and exchange risk, with a focus on the niche needs of small and medium-sized businesses. Their risk exchange platform supports a curated network of top-tier underwriting teams, providing deep insights into insurance pools with a diversified portfolio that minimizes catastrophic, systemic, and aggregation risks. They're proud of their AM Best A- (Excellent) rating, which reflects their commitment to excellence in the insurance industry.


Accelerant is developing a cutting-edge platform to revolutionize how risk is exchanged in the future. Our Product & Technology (P&T) organization is seeking an experienced Analytics Engineer to manage high value data to provide insights, value, and security to Accelerants clientele..


How will you spend your time

  • Designing and implementing data pipelines and models, ensuring data quality and integrity.
  • Solving challenging data integration problems, utilizing optimal patterns, frameworks, query techniques, sourcing from vast and varying data sources.
  • Building, maintaining, and optimizing our Data Warehouse to support reporting and analytics needs.
  • Collaborating with product managers, business stakeholders and engineers to understand the data needs, representing key data insights in a meaningful way.
  • Staying up-to-date with industry trends and best practices in data modelling, database development, and analytics.
  • Optimizing pipelines, frameworks, and systems to facilitate easier development of data artifacts.


You will be successful if you have

  • A deep desire to build, model and maintain high value data to maximize usability and access to the insights that data generates.
  • Good experience in Kimball/dimensional modelling &/or Data Vault.
  • Several years experience in building and maintaining Data Warehouses for reporting and analytics.
  • Strong skills in SQL, Python, problem-solving and data analysis.
  • Strong background in Insurance and/or Dbt.
  • Communicate and collaborate well both on technical and product levels.
  • An eagerness to learn and collaborate with others, learn quickly and are able to work with little supervision.



If you're interested in this opportunity, please send across your CV to .

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.