National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Accelerant | Data Engineer

Accelerant
Edinburgh
5 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer - Customer Success

Data Analyst

AI Engineering Researcher

Staff Data Engineer

IT Administrator

About Accelerant:

Accelerant is a data-driven, technology-powered insurance platform that empowers underwriters to better serve their insureds. Their advanced data intelligence tools are revolutionizing how underwriters share and exchange risk, with a focus on the niche needs of small and medium-sized businesses. Their risk exchange platform supports a curated network of top-tier underwriting teams, providing deep insights into insurance pools with a diversified portfolio that minimizes catastrophic, systemic, and aggregation risks. They're proud of their AM Best A- (Excellent) rating, which reflects their commitment to excellence in the insurance industry.


Accelerant is developing a cutting-edge platform to revolutionize how risk is exchanged in the future. Our Product & Technology (P&T) organization is seeking an experienced Analytics Engineer to manage high value data to provide insights, value, and security to Accelerants clientele..


How will you spend your time

  • Designing and implementing data pipelines and models, ensuring data quality and integrity.
  • Solving challenging data integration problems, utilizing optimal patterns, frameworks, query techniques, sourcing from vast and varying data sources.
  • Building, maintaining, and optimizing our Data Warehouse to support reporting and analytics needs.
  • Collaborating with product managers, business stakeholders and engineers to understand the data needs, representing key data insights in a meaningful way.
  • Staying up-to-date with industry trends and best practices in data modelling, database development, and analytics.
  • Optimizing pipelines, frameworks, and systems to facilitate easier development of data artifacts.


You will be successful if you have

  • A deep desire to build, model and maintain high value data to maximize usability and access to the insights that data generates.
  • Good experience in Kimball/dimensional modelling &/or Data Vault.
  • Several years experience in building and maintaining Data Warehouses for reporting and analytics.
  • Strong skills in SQL, Python, problem-solving and data analysis.
  • Strong background in Insurance and/or Dbt.
  • Communicate and collaborate well both on technical and product levels.
  • An eagerness to learn and collaborate with others, learn quickly and are able to work with little supervision.



If you're interested in this opportunity, please send across your CV to .

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.