Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

▷ 3 Days Left! Machine Learning Engineer (UK)

Coram AI
London
4 months ago
Applications closed

Started in 2021, Coram.AI is building the bestbusiness AI video system on the market. Powered by thenext-generation video artificial intelligence, we deliverunprecedented insights and 10x better user experience than theincumbents of the vast but stagnant video security industry. Ourcustomers range from warehouses, schools, hospitals, hotels, andmany more, and we are growing rapidly. We are looking for someoneto join our team to help us scale our systems to meet the userdemand and to ship new features. Team you will work with Founded byAshesh (CEO) and Peter (CTO), we are serial entrepreneurs andexperts in AI and robotics. Our engineering team is composed ofindustry experts with decades of research and experience from Lyft,Google, Zoox, Toyota, Facebook, Microsoft, Stanford, Oxford, andCornell. Our go-to-market team consists of experienced leaders fromVerkada. We are venture-backed by 8VC + Mosaic, revenue-generating,and have multiple years of runway. Being part of our team meanssolving interesting problems at the intersection of userexperience, machine learning and infrastructure. It also meanscommitting to excellence, learning, and delivering great productsto our customers in a high-velocity startup. The role We are hiringa Machine Learning engineer. - Take an existing open-source Pytorchmodel, fine-tune, productionize them in C++ runtime, and optimizefor latency and throughput. - Take an open-source model andfine-tune them on our in-house data set as needed. - Designthoughtful experiments in evaluating the tradeoffs between latencyand accuracy on the end customer use case. - Integrate the modelwith the downstream use case and fully own the end metrics. -Maintain and improve all existing ML applications in the product. -Read research papers and develop ideas on how they could be appliedto video security use cases, and convert those ideas to workingcode. Requirements - You should be a good software engineer whoenjoys writing production-grade software. - Strong machine learningfundamentals (linear algebra, probability and statistics,supervised and self-supervised learning). - Keeping up with thelatest in deep learning research, reading research papers, andfamiliarity with the latest developments in foundation models andLLMs. - (Good to have) Comfortable with productionizing a Pytorchmodel developed in C++, profiling the model for latency, findingbottlenecks, and optimizing them. - Good understanding of dockerand containerization. - (Good to have) Experience with Pytorch andPython3, and comfortable with C++. - (Good to have) Understandingof Torch script, ONNX runtime, TensorRT. - (Good to have)Understanding of half-precision inference and int8 quantization.What we offer - Company equity % in an early-stage startup.#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.