Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

2026 Graduate Machine Learning Engineer - Applied AI

Graphcore
Bristol
4 weeks ago
Create job alert
About Us

Graphcore is one of the world’s leading innovators in Artificial Intelligence compute. It is developing hardware, software and systems infrastructure that will unlock the next generation of AI breakthroughs and power the widespread adoption of AI solutions across every industry. As part of the SoftBank Group, Graphcore is a member of an elite family of companies responsible for some of the world’s most transformative technologies. Together, they share a bold vision: to enable Artificial Super Intelligence and ensure its benefits are accessible to everyone. Graphcore’s teams are drawn from diverse backgrounds and bring a broad range of skills and perspectives. A melting pot of AI research specialists, silicon designers, software engineers and systems architects, Graphcore enjoys a culture of continuous learning and constant innovation.


Job Summary

As a Graduate Machine Learning Engineer in the Applied AI team at Graphcore, you will contribute to advancing AI technology by developing and optimising AI models tailored to our specialised hardware. Working closely with the Software development and Research teams, you will play a critical role in identifying opportunities to innovate and differentiate Graphcore’s technology. This role is ideal for someone who loves working hands‑on with models, has a strong foundation in ML fundamentals, and wants to push the boundaries of AI performance in real‑world systems.


The Team

The Applied AI team’s role is to understand the latest AI models, applications, and software to ensure that Graphcore’s technology works seamlessly with the AI ecosystem. We build reference applications, contribute to key software libraries e.g. optimising kernels for efficiency on our hardware, and collaborate with the Research team to develop and publish novel ideas in domains such as efficient compute, model scaling and distributed training and inference of AI models for different modalities and applications.


Responsibilities And Duties

  • Implement state‑of‑the‑art machine learning models and optimise them for performance and accuracy, scaling to thousands of accelerators.
  • Evaluate new software releases, provide feedback to software engineering teams, make necessary code fixes, and conduct code reviews.
  • Benchmark models and key model components to identify performance bottlenecks and improve model efficiency.
  • Design and conduct experiments on novel AI methods, analyse and report results clearly.
  • Collaborate with Research, Software, and Product teams to define, build, and test Graphcore’s next generation of AI hardware.
  • Stay current with AI research and actively engage with the broader AI and open‑source community.

Candidate Profile
Essential

  • Bachelor’s/Master's degree in Machine Learning, Computer Science, Maths, Data Science, or related field.
  • Proficiency in deep learning frameworks such as PyTorch/JAX and strong software development skills.
  • Solid understanding of deep learning fundamentals — architectures, optimisation, evaluation, and scaling.
  • Capable of designing, executing and reporting from ML experiments.
  • Comfortable working in a fast‑moving, occasionally ambiguous environment.
  • Enjoy cross‑functional work collaborating with other teams.

Desirable

  • Development of deep learning models including large generative models for language, vision and other modalities.
  • Low‑precision/efficient compute.
  • Distributed training of large‑scale ML models.
  • Experience writing high performance C++/Triton/CUDA kernels.
  • Contributions to open‑source projects or published research.
  • Familiarity with cloud platforms and ML infrastructure.
  • Enthusiasm for presenting, publishing, or engaging in the AI community.

Benefits

In addition to a competitive salary, Graphcore offers flexible working, a generous annual leave policy, private medical insurance and health cash plan, a dental plan, pension (matched up to 5%), life assurance and income protection. We have a generous parental leave policy and an employee assistance programme (which includes health, mental wellbeing, and bereavement support). We offer a range of healthy food and snacks at our central Bristol office and have our own barista bar! We welcome people of different backgrounds and experiences; we’re committed to building an inclusive work environment that makes Graphcore a great home for everyone. We offer an equal opportunity process and understand that there are visible and invisible differences in all of us. We can provide a flexible approach to interview and encourage you to chat to us if you require any reasonable adjustments.


Seniority level

Internship


Employment type

Full‑time


Job function

Engineering and Information Technology


Industries

Semiconductor Manufacturing


Referrals increase your chances of interviewing at Graphcore by 2x


#J-18808-Ljbffr

Related Jobs

View all jobs

2026 Graduate Machine Learning Engineer - Applied AI

Machine Learning Engineer/Researcher - 2026 Graduate Programme

Machine Learning Engineer/Researcher - 2026 Graduate Programme

Machine Learning Engineer / Researcher - 2026 Graduate Programme

Machine Learning Engineer/Researcher - 2026 Graduate Programme

Graduate Machine Learning Engineer Programme

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.