2025 Summer Internship – Quantitative Risk

Capstone Investment Advisors
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Machine Learning Engineer

Senior Data Engineer

Data Engineer

Business Data Analyst Inside IR35

Talend Data Engineer 24 Month FTC

PROGRAM DETAILS

Capstone’s 5 Summer Internship is a 10 week summer program. You will be given a project that is both educational and a value add to the business, at the end of the summer you will present your project to the senior leadership team. Throughout the program you will attend educational sessions given by senior leadership, we will host team building exercises and encourage relationship building with the firm. At the end of the summer, we will have a send-off lunch to close out the program and thank you for all your hard work.DepartmentThe Risk Management Team is responsible for measuring, monitoring, and managing the risks of the firm. The Team identifies, quantifies, evaluates, and reports the risks which result from trading strategies across all asset classes. It works closely with trading and technology teams to create and maintain tools for risk management and analytics, to make managers aware of existing and potential risks to the firm and its investors. DESIRABLE CANDIDATES: Pursuing an undergraduate, or master’s degree in Financial Engineering Interest in financial markets Experience in writing Python code (Pandas, NumPy, sklearn, dash, plotly, flask, Django) Strong communication skills both written and verbal Ability to find creative solutions to problems Familiarity with machine learning would be advantageous Capstone is committed to creating an inclusive environment where we welcome people of different backgrounds. Capstone considers applications for employment without regard to all applicable protected characteristics, including race, color, religion, ethnicity, national origin, gender, sexual orientation, gender identity or expression, age, parental status, veteran status, or disability status.HOURLY RATE$30 USD – $40 USD

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.