National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

▷ (15h Left) Senior Machine Learning Engineer...

Burns Sheehan
City of London
2 days ago
Create job alert

Job Description

Lead/Senior Machine Learning Engineer

  • £110,000-£120,000
  • Bonus up to 10%
  • Shares so as they continue to grow you benefit to
  • Hybrid working - one day a week London (with door always open policy)

    Are you a innovative, decisive Machine Learning Engineer looking for your next challenge?

    This is your chance to join a marquee name within the fin-tech space looking to add their first Machine Learning Engineer to the business, this will require you to be a key individual contributor with the ability to make decisions yourself.

    Within the role you will drive innovation by optimising and automating Pricing processes to enable faster, more accurate decision-making. Your work will focus on developing and maintaining tooling and frameworks that enhance the efficiency of our predictive models, reducing deployment times, increasing scalability, and improving model performance through regular updates and monitoring.

    You will work closely with the Data Scientists and Product team to deliver scalable, production-grade ML systems.

    This is a super exciting time to join the business who after a number of years of great success have hit profitability and now want to grow through strategic hiring.

    Key Responsibilities

  • Build model lifecycle tooling (deployment, monitoring and alerting) for our predictive models (for example claims cost, conversion, retention, market models)
  • Maintain and improve the development environment (Kubeflow) used by the Data Scientists

  • Develop and maintain pricing analytics tools that enable faster impact assessments, reducing manual work
  • Collaborate with the technical pricing, street pricing and product teams to gather requirements and feedback on tooling and to build impactful technology
  • Communicate complex concepts to technical and non-technical stakeholders through clear storytelling

    Required Skills

  • Education: Bachelor’s or Master’s degree in Statistics, Data Science, Computer Science or related field
  • Experience: Proven experience in ML model lifecycle management

    ● Core Competencies:

  • Model lifecycle: You’ve got hands-on experience with managing the ML model lifecycle, including both online and batch processes
  • Statistical Methodology: You have worked with GLMs and other machine learning algorithms and have in-depth knowledge of how they work
  • Python: You have built and deployed production-grade Python applications and you are familiar with data science libraries such as pandas and scikit-learn
  • Tooling & Environment: ○ DevOps: You have experience working with DevOps tooling, such as gitops, Kubernetes, CI/CD tools (we use buildkite) and Docker
  • Cloud: You have worked with cloud-based environments before (we use AWS)
  • SQL: You have a good grasp of SQL, particularly with cloud data warehouses like Snowflake
  • Version control: You are proficient with git

    Soft Skills:

  • You are an excellent communicator, with an ability to translate non-technical requirements into clear, actionable pieces of work
  • You have proven your project management skills, with the ability to manage multiple priorities

    Interested in finding out more? Click apply to be considered for shortlisting.

Related Jobs

View all jobs

▷ [03/07/2025] Data Analyst - Womenswear Fashion Supplier...

▷ (Only 24h Left) Data Engineer (Real Estate) - Azure/ADF/DBT...

▷ Urgent! Senior Data Scientist – Cardiff, London, or Remote (UK) | Visa Sponsorship Available | Monzo...

▷ 3 Days Left: Senior MLOps Engineer IRC261736...

▷ [03/07/2025] Lead Data Scientist...

▷ [3 Days Left] Data Engineer (Remote) – UK Software Engineering London...

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.