▷ (15h Left) AI Trainer for Physics (College DegreeRequired)

Alignerr
Buxton
3 weeks ago
Applications closed

Related Jobs

View all jobs

▷ Immediate Start! Lead Data Scientist ...

▷ Immediate Start! Machine Learning Engineer, Amazon StudiosAI Lab ...

Alignerr.com is a community of subject matter expertsfrom several disciplines who align AI models by creatinghigh-quality data in their field of expertise to build the futureof Generative AI. Alignerr is operated by Labelbox. Labelbox is theleading data-centric AI platform for building intelligentapplications. Teams looking to capitalize on the latest advances ingenerative AI and LLMs use the Labelbox platform to inject thesesystems with the right degree of human supervision and automation.Whether they are building AI products by using LLMs that requirehuman fine-tuning, or applying AI to reduce the time associatedwith manually-intensive tasks like data labeling or findingbusiness insights, Labelbox enables teams to do so effectively andquickly. Current Labelbox customers are transforming industrieswithin insurance, retail, manufacturing/robotics, healthcare, andbeyond. Our platform is used by Fortune 500 enterprises includingWalmart, Procter & Gamble, Genentech, and Adobe, as well ashundreds of leading AI teams. We are backed by leading investorsincluding SoftBank, Andreessen Horowitz, B Capital, GradientVentures (Google's AI-focused fund), Databricks Ventures, SnowpointVentures and Kleiner Perkins. About the Role Shape the future of AIin Physics. This innovative role as an AI Trainer - Physics offersa unique opportunity to leverage your subject-matter expertise anddevelop your AI skills. You will play a pivotal role in training AImodels, ensuring the accuracy and relevance of Physics contentgenerated by AI. This position allows for flexible scheduling, andyour contributions will directly impact the advancement of AI inPhysics. Your Day to Day - Educate AI: Analyze and provide feedbackon AI-generated outputs related to Physics Your guidance willdirectly improve the AI's accuracy and ability to apply itsknowledge to real-world problems. - Problem Solving: Using yourexpertise, you will provide step-by-step solutions and explanationsto complex problems in Physics. This could include solving problemsrelated to projectile motion, electromagnetic fields, waveinterference, energy conservation, and relativity ,etc. Your inputwill be crucial in teaching the AI how to reason through theseproblems effectively. - Red Teaming: Utilize your deepunderstanding of the field to identify potential biases,limitations, or inaccuracies in the AI's knowledge base. Design andconduct tests that push the boundaries of the model'sunderstanding, ensuring its outputs are reliable and applicable toreal-world scenarios. - You create your own working hours dependingon project length. About You - Enrolled in or have completed anAssociates’ degree or higher from an accredited institution. -Fluent proficiency in Physics. - Possess a strong writing stylewith excellent English-language spelling and grammar skills. - Havea critical eye and the ability to clearly articulate the strengthsand weaknesses of written text. - Professional writing experienceas a researcher, journalist, technical writer, editor, or similarroles - Interest in AI and machine learning concepts ImportantInformation This is a freelance position compensated on an hourlybasis. Please note that this is not an internship opportunity.Candidates must be authorized to work in their country ofresidence, and we do not offer sponsorship for this 1099 contractrole. International students on a valid visa may be eligible toapply; however, specific circumstances should be discussed with atax or immigration advisor. We are unable to provide employmentdocumentation at this time. Compensation rates may vary for non-USlocations. Pay Range (rate per hour) $15—$150 USD Excel in aremote-friendly hybrid model.We are dedicated to achievingexcellence and recognize the importance of bringing our talentedteam together. While we continue to embrace remote work, we havetransitioned to a hybrid model with a focus on nurturingcollaboration and connection within our dedicated tech hubs in theSan Francisco Bay Area, New York City Metro Area, and Wrocław,Poland. We encourage asynchronous communication, autonomy, andownership of tasks, with the added convenience of hub-basedgatherings. Your Personal Data Privacy: Any personal informationyou provide Labelbox as a part of your application will beprocessed in accordance with Labelbox’s Job Applicant Privacynotice. Any emails from Labelbox team members will originate from email address. If you encounter anything that raisessuspicions during your interactions, we encourage you to exercisecaution and suspend or discontinue communications. If you areuncertain about the legitimacy of any communication you havereceived, please do not hesitate to reach out to us for clarification andverification.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!