Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Engineer

Made Tech Limited
Swansea
3 weeks ago
Create job alert

Our Senior Data Engineers enable public sector organisations to embrace a data-driven approach by providing high-quality, cost-efficient data platforms and services tailored to clients’ needs. They develop, operate, and maintain these services, ensuring maximum value for data consumers, including analysts, scientists, and business stakeholders.

Key responsibilities

As a Senior Data Engineer, you may assume multiple roles based on our clients' needs. The role is highly hands-on, supporting project delivery as a senior contributor and upskilling client team members. You might also take on a technical architect role, collaborating with the MadeTech team to identify growth opportunities within the account.

You’ll need a drive to deliver outcomes for users, considering the broader context of delivery and maintaining alignment between operational and analytical aspects of the engineering solution.

Skills, knowledge and expertise

We seek candidates with a range of skills and experience; please apply even if you don’t meet all criteria.

  • Enthusiasm for learning and self-development
  • Proficiency in Git (including Github Actions) and understanding of branch strategies
  • Experience gathering and meeting requirements from clients and users on data projects
  • Strong experience in Infrastructure as Code (IaC) and deploying infrastructure across environments
  • Managing cloud infrastructure with a DevOps approach
  • Handling and transforming various data types (JSON, CSV, etc.) using Apache Spark, Databricks, or Hadoop
  • Understanding modern data system architectures (Data Warehouse, Data Lakes, Data Meshes) and their use cases
  • Creating data pipelines on cloud platforms with error handling and reusable libraries
  • Documenting and presenting end-to-end data processing system diagrams (C4, UML, etc.)
  • Implementing robust DevOps practices in data projects, including DataOps tools for orchestration, data integration, and analytics
  • Enhancing resilience through vulnerability checks and testing strategies (unit, integration, data quality)
  • Applying SOLID, DRY, and TDD principles practically
  • Agile methodologies such as Scrum, XP, and Kanban
  • Designing and implementing efficient batch and streaming data transformations at scale
  • Mentoring, team support, and line management skills
  • Commercial mindset to grow accounts organically with senior stakeholders

Experience in the following areas is desirable but not essential:

  • Working in a technology consultancy
  • Using Docker and virtual environments in CI/CD
  • Engaging with senior stakeholders for requirements gathering
  • Collaborating with engineers via pair or mob programming
  • Working with data scientists to productionize machine learning models
  • Knowledge of statistics
  • Collaborating across multidisciplinary teams
  • Experience within the public sector

Support in applying

If you need this job description in another format or require support in applying, please email .

We believe technology can improve public services and that diversity within our team enhances this mission. We encourage applicants from underrepresented groups to apply.

We are committed to accessibility and inclusion, offering adjustments for interview processes and welcoming feedback on our candidate experience.

We foster community through Slack channels and communities of practice, covering interests like music, food, pets, and professional development. If you'd like to connect with these groups, please contact a Made Tech talent team member.

Our benefits include flexible schemes like Smart Tech, Cycle to Work, and personalized benefit allowances. We promote connection through social and wellbeing events.

Our popular benefits:

30 days Holiday - paid leave plus bank holidays

Remote Working - part-time remote options

Paid counselling - mental health, legal, and financial advice

Candidates must be eligible for SC security clearance, requiring 5 years of UK residency. If eligibility is not confirmed during the process, we cannot proceed with your application.

Interested?

Join us in using technology to improve society. Our transparent and supportive hiring process guides candidates at each stage, with feedback provided throughout. Shortlisted candidates will be invited for screening. Register your interest to stay updated on relevant roles.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.