National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Data Engineer

Artefact
england, ecr eb
10 months ago
Create job alert

Senior Data Engineer 

Who we are

Artefact is a new generation of data service provider, specialising in data consulting and data-driven digital marketing, dedicated to transforming data into business impact across the entire value chain of organisations. We are proud to say we’re enjoying skyrocketing growth.

Our broad range of data-driven solutions in data consulting and digital marketing are designed to meet our clients’ specific needs, always conceived with a business-centric approach and delivered with tangible results. Our data-driven services are built upon the deep AI expertise we’ve acquired with our 1000+ client base around the globe.

We have over 1500 employees across 20 offices who are focused on accelerating digital transformation. Thanks to a unique mix of company assets: State of the art data technologies, lean AI agile methodologies for fast delivery, and cohesive teams of the finest business consultants, data analysts, data scientists, data engineers, and digital experts, all dedicated to bringing extra value to every client.

Job Summary

We are looking for a Senior Data Engineer to join our dynamic team. This role is ideal for someone with a deep understanding of data engineering and a proven track record of leading data projects in a fast-paced environment. 

Key Responsibilities

Design, build, and maintain scalable and robust data pipelines using SQL, Python, Databricks, Snowflake, Azure Data Factory, AWS Glue, Apache Airflow and Pyspark. Lead the integration of complex data systems and ensure consistency and accuracy of data across multiple platforms. Implement continuous integration and continuous deployment (CI/CD) practices for data pipelines to improve efficiency and quality of data processing. Work closely with data architects, analysts, and other stakeholders to understand business requirements and translate them into technical implementations. Oversee and manage a team of data engineers, providing guidance and mentorship to ensure high-quality project deliverables. Develop and enforce best practices in data governance, security, and compliance within the organisation. Optimise data retrieval and develop dashboards and reports for business teams. Continuously evaluate new technologies and tools to enhance the capabilities of the data engineering function.

Qualifications

Bachelor's or Master’s degree in Computer Science, Engineering, or a related field. 6+ years of industry experience in data engineering with a strong technical proficiency in SQL, Python, and big data technologies. Extensive experience with cloud services such as Azure Data Factory and AWS Glue. Demonstrated experience with Databricks and Snowflake. Solid understanding of CI/CD principles and DevOps practices. Proven leadership skills and experience managing data engineering teams. Strong project management skills and the ability to lead multiple projects simultaneously. Excellent problem-solving skills and the ability to work under tight deadlines. Strong communication and interpersonal skills. Excellent understanding of data architecture including data mesh, data lake and data warehouse.

Preferred Qualifications:

Certifications in Azure, AWS, or similar technologies. Certifications in Databricks, Snowflake or similar technologies Experience in the leading large scale data engineering projects

Working Conditions

This position may require occasional travel. Hybrid work arrangement: two days per week working from the office near St. Paul’s 

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer - Azure - Leeds

Senior Data Engineer - Winchester

Senior Data Engineer - Cloud

Senior Data Engineer Consultant

Senior Data Engineer - Clayton-le-Moors

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.