
Edge AI and TinyML: Career Opportunities and Trends in Machine Learning for 2024
In the world of machine learning (ML), the focus has traditionally been on powerful, centralised servers and cloud computing environments where complex models can be trained and deployed. However, as the technology advances and the demand for real-time, on-device processing grows, a new paradigm has emerged: Edge AI and TinyML. These approaches involve running machine learning models directly on edge devices, such as smartphones, IoT gadgets, and embedded systems, rather than relying on cloud-based infrastructures. Edge AI and TinyML are revolutionising industries by enabling intelligent systems that can operate independently, reduce latency, enhance privacy, and minimise energy consumption. In this article, we will explore the concepts of Edge AI and TinyML, their applications, the challenges they address, their implications for the future of machine learning, and how this growing field is creating exciting job opportunities.